Decomposing and twisting bisectorial operators
Studia Mathematica, Tome 197 (2010) no. 3, pp. 205-227

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Bisectorial operators play an important role since exactly these operators lead to a well-posed equation $u'(t)=Au(t)$ on the entire line. The simplest example of a bisectorial operator $A$ is obtained by taking the direct sum of an invertible generator of a bounded holomorphic semigroup and the negative of such an operator. Our main result shows that each bisectorial operator $A$ is of this form, if we allow a more general notion of direct sum defined by an unbounded closed projection. As a consequence we can express the solution of the evolution equation on the line by an integral operator involving two semigroups associated with $A$.
DOI : 10.4064/sm197-3-1
Keywords: bisectorial operators play important role since exactly these operators lead well posed equation entire line simplest example bisectorial operator obtained taking direct sum invertible generator bounded holomorphic semigroup negative operator main result shows each bisectorial operator form allow general notion direct sum defined unbounded closed projection consequence express solution evolution equation line integral operator involving semigroups associated

Wolfgang Arendt 1 ; Alessandro Zamboni 2

1 Institute of Applied Analysis University of Ulm Helmholtzstr. 18 89081 Ulm, Germany
2 Dipartimento di Matematica Università degli Studi di Parma via G. P. Usberti 53//A 43100 Parma, Italy
@article{10_4064_sm197_3_1,
     author = {Wolfgang Arendt and Alessandro Zamboni},
     title = {Decomposing and twisting bisectorial operators},
     journal = {Studia Mathematica},
     pages = {205--227},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2010},
     doi = {10.4064/sm197-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-1/}
}
TY  - JOUR
AU  - Wolfgang Arendt
AU  - Alessandro Zamboni
TI  - Decomposing and twisting bisectorial operators
JO  - Studia Mathematica
PY  - 2010
SP  - 205
EP  - 227
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-1/
DO  - 10.4064/sm197-3-1
LA  - en
ID  - 10_4064_sm197_3_1
ER  - 
%0 Journal Article
%A Wolfgang Arendt
%A Alessandro Zamboni
%T Decomposing and twisting bisectorial operators
%J Studia Mathematica
%D 2010
%P 205-227
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-1/
%R 10.4064/sm197-3-1
%G en
%F 10_4064_sm197_3_1
Wolfgang Arendt; Alessandro Zamboni. Decomposing and twisting bisectorial operators. Studia Mathematica, Tome 197 (2010) no. 3, pp. 205-227. doi: 10.4064/sm197-3-1

Cité par Sources :