The notions of approximate amenability and weak amenability in Banach algebras are formally stronger than that of approximate weak amenability. We demonstrate an example confirming that approximate weak amenability is indeed actually weaker than either approximate or weak amenability themselves. As a consequence, we examine the (failure of) approximate amenability for $\ell ^{ p}$-sums of finite-dimensional normed algebras.
@article{10_4064_sm197_2_5,
author = {P. Bharucha and R. J. Loy},
title = {Approximate and weak amenability of
certain {Banach} algebras},
journal = {Studia Mathematica},
pages = {195--204},
year = {2010},
volume = {197},
number = {2},
doi = {10.4064/sm197-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-2-5/}
}
TY - JOUR
AU - P. Bharucha
AU - R. J. Loy
TI - Approximate and weak amenability of
certain Banach algebras
JO - Studia Mathematica
PY - 2010
SP - 195
EP - 204
VL - 197
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm197-2-5/
DO - 10.4064/sm197-2-5
LA - en
ID - 10_4064_sm197_2_5
ER -
%0 Journal Article
%A P. Bharucha
%A R. J. Loy
%T Approximate and weak amenability of
certain Banach algebras
%J Studia Mathematica
%D 2010
%P 195-204
%V 197
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-2-5/
%R 10.4064/sm197-2-5
%G en
%F 10_4064_sm197_2_5
P. Bharucha; R. J. Loy. Approximate and weak amenability of
certain Banach algebras. Studia Mathematica, Tome 197 (2010) no. 2, pp. 195-204. doi: 10.4064/sm197-2-5