Linear maps Lie derivable at zero on $\mathcal J$-subspace lattice algebras
Studia Mathematica, Tome 197 (2010) no. 2, pp. 157-169
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A linear map $L$ on an algebra is said to be Lie derivable at zero if $L([A,B]) =[L(A),B] +[A,L(B)]$ whenever $[A,B] =0$. It is shown that, for a $\mathcal{J}$-subspace lattice $\mathcal L$ on a Banach space $X$ satisfying $\dim K\not=2$ whenever $K\in{\mathcal J}({\mathcal L})$, every linear map on ${\mathcal F}({\mathcal L})$ (the subalgebra of all finite rank operators in the JSL algebra ${\rm Alg} {\mathcal L}$) Lie derivable at zero is of the standard form $A\mapsto \delta (A)+\phi(A)$, where $\delta $ is a generalized derivation and $\phi$ is a center-valued linear map. A characterization of linear maps Lie derivable at zero on ${\rm Alg} {\mathcal L}$ is also obtained, which are not of the above standard form in general.
DOI : 10.4064/sm197-2-3
Keywords: linear map algebra said lie derivable zero whenever shown mathcal subspace lattice mathcal banach space satisfying dim whenever mathcal mathcal every linear map mathcal mathcal subalgebra finite rank operators jsl algebra alg mathcal lie derivable zero standard form mapsto delta phi where delta generalized derivation phi center valued linear map characterization linear maps lie derivable zero alg mathcal obtained which above standard form general

Xiaofei Qi  1   ; Jinchuan Hou  2

1 Department of Mathematics Shanxi University Taiyuan 030006, P.R. China
2 Department of Mathematics Taiyuan University of Technology Taiyuan 030024, P.R. China
@article{10_4064_sm197_2_3,
     author = {Xiaofei Qi and Jinchuan Hou},
     title = {Linear maps {Lie} derivable at zero on $\mathcal J$-subspace
lattice algebras},
     journal = {Studia Mathematica},
     pages = {157--169},
     year = {2010},
     volume = {197},
     number = {2},
     doi = {10.4064/sm197-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-2-3/}
}
TY  - JOUR
AU  - Xiaofei Qi
AU  - Jinchuan Hou
TI  - Linear maps Lie derivable at zero on $\mathcal J$-subspace
lattice algebras
JO  - Studia Mathematica
PY  - 2010
SP  - 157
EP  - 169
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-2-3/
DO  - 10.4064/sm197-2-3
LA  - en
ID  - 10_4064_sm197_2_3
ER  - 
%0 Journal Article
%A Xiaofei Qi
%A Jinchuan Hou
%T Linear maps Lie derivable at zero on $\mathcal J$-subspace
lattice algebras
%J Studia Mathematica
%D 2010
%P 157-169
%V 197
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-2-3/
%R 10.4064/sm197-2-3
%G en
%F 10_4064_sm197_2_3
Xiaofei Qi; Jinchuan Hou. Linear maps Lie derivable at zero on $\mathcal J$-subspace
lattice algebras. Studia Mathematica, Tome 197 (2010) no. 2, pp. 157-169. doi: 10.4064/sm197-2-3

Cité par Sources :