Almost multiplicative functions on commutative Banach algebras
Studia Mathematica, Tome 197 (2010) no. 1, pp. 93-99

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ be a complex commutative Banach algebra with unit 1 and $\delta >0$. A linear map $\phi:A\rightarrow\mathbb C$ is said to be $\delta$-almost multiplicative if $$|{\phi(ab)-\phi(a)\phi(b)}|\leq \delta \|{a}\|\,\|{b}\| \quad \hbox{for all} \ a,b \in A.$$ Let $0\epsilon1$. The $\epsilon$-condition spectrum of an element $a$ in $A$ is defined by $$\sigma_\epsilon(a):=\{\lambda\in \mathbb C : \|{\lambda-a}\|\,\|{(\lambda-a)^{-1}}\| \geq {1}/{\epsilon}\}$$ with the convention that $\|{\lambda-a}\|\,\|{(\lambda-a)^{-1}}\|=\infty$ when $\lambda-a$ is not invertible. We prove the following results connecting these two notions:(1) If $\phi(1) = 1$ and $\phi$ is $\delta$-almost multiplicative, then $\phi(a)\in\sigma_{\delta}(a)$ for all $a$ in $A$. (2) If $\phi$ is linear and $\phi(a)\in\sigma_{\epsilon}(a)$ for all $a$ in $A$, then $\phi$ is $\delta$-almost multiplicative for some $\delta$.The first result is analogous to the Gelfand theory and the last result is analogous to the classical Gleason–Kahane–Żelazko theorem.
DOI : 10.4064/sm197-1-8
Keywords: complex commutative banach algebra unit delta linear map phi rightarrow mathbb said delta almost multiplicative phi phi phi leq delta quad hbox epsilon epsilon condition spectrum element defined sigma epsilon lambda mathbb lambda a lambda a geq epsilon convention lambda a lambda a infty lambda a invertible prove following results connecting these notions phi phi delta almost multiplicative phi sigma delta phi linear phi sigma epsilon phi delta almost multiplicative delta first result analogous gelfand theory result analogous classical gleason kahane elazko theorem

S. H. Kulkarni 1 ; D. Sukumar 2

1 Indian Institute of Technology Madras Chennai, India
2 National Institute of Technology Karnataka Surathkal, India
@article{10_4064_sm197_1_8,
     author = {S. H. Kulkarni and D. Sukumar},
     title = {Almost multiplicative functions on commutative {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {197},
     number = {1},
     year = {2010},
     doi = {10.4064/sm197-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-8/}
}
TY  - JOUR
AU  - S. H. Kulkarni
AU  - D. Sukumar
TI  - Almost multiplicative functions on commutative Banach algebras
JO  - Studia Mathematica
PY  - 2010
SP  - 93
EP  - 99
VL  - 197
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-8/
DO  - 10.4064/sm197-1-8
LA  - en
ID  - 10_4064_sm197_1_8
ER  - 
%0 Journal Article
%A S. H. Kulkarni
%A D. Sukumar
%T Almost multiplicative functions on commutative Banach algebras
%J Studia Mathematica
%D 2010
%P 93-99
%V 197
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-8/
%R 10.4064/sm197-1-8
%G en
%F 10_4064_sm197_1_8
S. H. Kulkarni; D. Sukumar. Almost multiplicative functions on commutative Banach algebras. Studia Mathematica, Tome 197 (2010) no. 1, pp. 93-99. doi: 10.4064/sm197-1-8

Cité par Sources :