Almost multiplicative functions on commutative Banach algebras
Studia Mathematica, Tome 197 (2010) no. 1, pp. 93-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a complex commutative Banach algebra with unit 1 and $\delta >0$.
A linear map $\phi:A\rightarrow\mathbb C$ is said to be
$\delta$-almost multiplicative if
$$|{\phi(ab)-\phi(a)\phi(b)}|\leq \delta \|{a}\|\,\|{b}\| \quad
\hbox{for all} \ a,b \in A.$$ Let $0\epsilon1$. The
$\epsilon$-condition spectrum of an element $a$ in $A$
is defined by
$$\sigma_\epsilon(a):=\{\lambda\in \mathbb C : \|{\lambda-a}\|\,\|{(\lambda-a)^{-1}}\| \geq {1}/{\epsilon}\}$$
with the convention that
$\|{\lambda-a}\|\,\|{(\lambda-a)^{-1}}\|=\infty$ when $\lambda-a$ is not
invertible.
We prove the following results connecting these two
notions:(1) If $\phi(1) = 1$ and $\phi$ is $\delta$-almost multiplicative, then $\phi(a)\in\sigma_{\delta}(a)$ for all $a$ in $A$.
(2) If $\phi$ is linear and $\phi(a)\in\sigma_{\epsilon}(a)$ for all $a$ in $A$, then $\phi$ is $\delta$-almost multiplicative for some $\delta$.The first result is analogous to the Gelfand theory and the
last result is analogous to the classical Gleason–Kahane–Żelazko
theorem.
Keywords:
complex commutative banach algebra unit delta linear map phi rightarrow mathbb said delta almost multiplicative phi phi phi leq delta quad hbox epsilon epsilon condition spectrum element defined sigma epsilon lambda mathbb lambda a lambda a geq epsilon convention lambda a lambda a infty lambda a invertible prove following results connecting these notions phi phi delta almost multiplicative phi sigma delta phi linear phi sigma epsilon phi delta almost multiplicative delta first result analogous gelfand theory result analogous classical gleason kahane elazko theorem
Affiliations des auteurs :
S. H. Kulkarni 1 ; D. Sukumar 2
@article{10_4064_sm197_1_8,
author = {S. H. Kulkarni and D. Sukumar},
title = {Almost multiplicative functions on commutative {Banach} algebras},
journal = {Studia Mathematica},
pages = {93--99},
publisher = {mathdoc},
volume = {197},
number = {1},
year = {2010},
doi = {10.4064/sm197-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-8/}
}
TY - JOUR AU - S. H. Kulkarni AU - D. Sukumar TI - Almost multiplicative functions on commutative Banach algebras JO - Studia Mathematica PY - 2010 SP - 93 EP - 99 VL - 197 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-8/ DO - 10.4064/sm197-1-8 LA - en ID - 10_4064_sm197_1_8 ER -
S. H. Kulkarni; D. Sukumar. Almost multiplicative functions on commutative Banach algebras. Studia Mathematica, Tome 197 (2010) no. 1, pp. 93-99. doi: 10.4064/sm197-1-8
Cité par Sources :