Optimal bounds of restricted type for the Hardy operator minus the identity on the cone of radially decreasing functions
Studia Mathematica, Tome 197 (2010) no. 1, pp. 69-79 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We find the norm of the Hardy operator minus the identity acting on the cone of radially decreasing functions on minimal Lorentz spaces (restricted type estimates).
DOI : 10.4064/sm197-1-6
Keywords: norm hardy operator minus identity acting cone radially decreasing functions minimal lorentz spaces restricted type estimates

Javier Soria  1

1 Department of Applied Mathematics and Analysis University of Barcelona E-08007 Barcelona, Spain
@article{10_4064_sm197_1_6,
     author = {Javier Soria},
     title = {Optimal bounds of restricted type for
 the {Hardy} operator minus the identity
 on the cone of radially decreasing functions},
     journal = {Studia Mathematica},
     pages = {69--79},
     year = {2010},
     volume = {197},
     number = {1},
     doi = {10.4064/sm197-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-6/}
}
TY  - JOUR
AU  - Javier Soria
TI  - Optimal bounds of restricted type for
 the Hardy operator minus the identity
 on the cone of radially decreasing functions
JO  - Studia Mathematica
PY  - 2010
SP  - 69
EP  - 79
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-6/
DO  - 10.4064/sm197-1-6
LA  - en
ID  - 10_4064_sm197_1_6
ER  - 
%0 Journal Article
%A Javier Soria
%T Optimal bounds of restricted type for
 the Hardy operator minus the identity
 on the cone of radially decreasing functions
%J Studia Mathematica
%D 2010
%P 69-79
%V 197
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-6/
%R 10.4064/sm197-1-6
%G en
%F 10_4064_sm197_1_6
Javier Soria. Optimal bounds of restricted type for
 the Hardy operator minus the identity
 on the cone of radially decreasing functions. Studia Mathematica, Tome 197 (2010) no. 1, pp. 69-79. doi: 10.4064/sm197-1-6

Cité par Sources :