On a construction of majorizing measures on subsets of $\mathbb R^n$ with special metrics
Studia Mathematica, Tome 197 (2010) no. 1, pp. 1-12

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider processes $X_t$ with values in $L_p({\mit\Omega},\mathcal{F},P)$ and “time” index $t$ in a subset $A$ of the unit cube. A natural condition of boundedness of increments is assumed. We give a full characterization of the domains $A$ for which all such processes are a.e. continuous. We use the notion of Talagrand's majorizing measure as well as geometrical Paszkiewicz-type characteristics of the set $A$. A majorizing measure is constructed.
DOI : 10.4064/sm197-1-1
Keywords: consider processes values mit omega mathcal time index subset unit cube nbsp natural condition boundedness increments assumed nbsp full characterization domains which processes continuous notion talagrands majorizing measure geometrical paszkiewicz type characteristics set nbsp nbsp majorizing measure constructed

Jakub Olejnik 1

1 Faculty of Mathematics and Computer Science University of Łódź Banacha 22 90-238 Łódź, Poland
@article{10_4064_sm197_1_1,
     author = {Jakub Olejnik},
     title = {On a construction of majorizing measures on subsets of
  $\mathbb R^n$ with special metrics},
     journal = {Studia Mathematica},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {197},
     number = {1},
     year = {2010},
     doi = {10.4064/sm197-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-1/}
}
TY  - JOUR
AU  - Jakub Olejnik
TI  - On a construction of majorizing measures on subsets of
  $\mathbb R^n$ with special metrics
JO  - Studia Mathematica
PY  - 2010
SP  - 1
EP  - 12
VL  - 197
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-1/
DO  - 10.4064/sm197-1-1
LA  - en
ID  - 10_4064_sm197_1_1
ER  - 
%0 Journal Article
%A Jakub Olejnik
%T On a construction of majorizing measures on subsets of
  $\mathbb R^n$ with special metrics
%J Studia Mathematica
%D 2010
%P 1-12
%V 197
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-1/
%R 10.4064/sm197-1-1
%G en
%F 10_4064_sm197_1_1
Jakub Olejnik. On a construction of majorizing measures on subsets of
  $\mathbb R^n$ with special metrics. Studia Mathematica, Tome 197 (2010) no. 1, pp. 1-12. doi: 10.4064/sm197-1-1

Cité par Sources :