On a construction of majorizing measures on subsets of
$\mathbb R^n$ with special metrics
Studia Mathematica, Tome 197 (2010) no. 1, pp. 1-12
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider processes $X_t$ with values in
$L_p({\mit\Omega},\mathcal{F},P)$ and “time” index $t$ in a subset $A$ of
the unit cube. A natural condition of boundedness of
increments is assumed. We give a full characterization of the
domains $A$ for which all such processes are a.e. continuous.
We use the notion of Talagrand's majorizing measure as well as
geometrical Paszkiewicz-type characteristics of the
set $A$. A majorizing measure is constructed.
Keywords:
consider processes values mit omega mathcal time index subset unit cube nbsp natural condition boundedness increments assumed nbsp full characterization domains which processes continuous notion talagrands majorizing measure geometrical paszkiewicz type characteristics set nbsp nbsp majorizing measure constructed
Affiliations des auteurs :
Jakub Olejnik 1
@article{10_4064_sm197_1_1,
author = {Jakub Olejnik},
title = {On a construction of majorizing measures on subsets of
$\mathbb R^n$ with special metrics},
journal = {Studia Mathematica},
pages = {1--12},
publisher = {mathdoc},
volume = {197},
number = {1},
year = {2010},
doi = {10.4064/sm197-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-1/}
}
TY - JOUR AU - Jakub Olejnik TI - On a construction of majorizing measures on subsets of $\mathbb R^n$ with special metrics JO - Studia Mathematica PY - 2010 SP - 1 EP - 12 VL - 197 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm197-1-1/ DO - 10.4064/sm197-1-1 LA - en ID - 10_4064_sm197_1_1 ER -
Jakub Olejnik. On a construction of majorizing measures on subsets of $\mathbb R^n$ with special metrics. Studia Mathematica, Tome 197 (2010) no. 1, pp. 1-12. doi: 10.4064/sm197-1-1
Cité par Sources :