The one-sided ergodic Hilbert transform in Banach spaces
Studia Mathematica, Tome 196 (2010) no. 3, pp. 251-263
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $T$ be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform $\lim_n \sum_{k=1}^n \frac{T^k x}k$. We prove that weak and strong convergence are equivalent, and in a reflexive space also $\sup_n \|\sum_{k=1}^n \frac{T^k x}k\| \infty$ is equivalent to the convergence. We also show that $-\sum_{k=1}^\infty \frac{T^k}k$ (which converges on $(I-T)X$) is precisely the infinitesimal generator of the semigroup $(I-T)^r\,_{|{\overline{(I-T)X}}}$.
DOI : 10.4064/sm196-3-3
Keywords: power bounded operator real complex banach space study convergence one sided ergodic hilbert transform lim sum frac k prove weak strong convergence equivalent reflexive space sup sum frac k infty equivalent convergence sum infty frac which converges i t precisely infinitesimal generator semigroup i t overline i t

Guy Cohen  1   ; Christophe Cuny  2   ; Michael Lin  3

1 Department of Electrical Engineering Ben-Gurion University Beer Sheva 84105, Israel
2 Equipe ERIM University of New Caledonia Nouméa, New Caledonia
3 Department of Mathematics Ben-Gurion University Beer Sheva 84105, Israel
@article{10_4064_sm196_3_3,
     author = {Guy Cohen and Christophe Cuny and Michael Lin},
     title = {The one-sided ergodic {Hilbert} transform in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {251--263},
     year = {2010},
     volume = {196},
     number = {3},
     doi = {10.4064/sm196-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-3-3/}
}
TY  - JOUR
AU  - Guy Cohen
AU  - Christophe Cuny
AU  - Michael Lin
TI  - The one-sided ergodic Hilbert transform in Banach spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 251
EP  - 263
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm196-3-3/
DO  - 10.4064/sm196-3-3
LA  - en
ID  - 10_4064_sm196_3_3
ER  - 
%0 Journal Article
%A Guy Cohen
%A Christophe Cuny
%A Michael Lin
%T The one-sided ergodic Hilbert transform in Banach spaces
%J Studia Mathematica
%D 2010
%P 251-263
%V 196
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-3-3/
%R 10.4064/sm196-3-3
%G en
%F 10_4064_sm196_3_3
Guy Cohen; Christophe Cuny; Michael Lin. The one-sided ergodic Hilbert transform in Banach spaces. Studia Mathematica, Tome 196 (2010) no. 3, pp. 251-263. doi: 10.4064/sm196-3-3

Cité par Sources :