1Department of Electrical Engineering Ben-Gurion University Beer Sheva 84105, Israel 2Equipe ERIM University of New Caledonia Nouméa, New Caledonia 3Department of Mathematics Ben-Gurion University Beer Sheva 84105, Israel
Studia Mathematica, Tome 196 (2010) no. 3, pp. 251-263
Let $T$ be a power-bounded operator on a (real or complex) Banach space.
We study the convergence of the one-sided ergodic Hilbert transform
$\lim_n \sum_{k=1}^n \frac{T^k x}k$.
We prove that weak and strong convergence are equivalent,
and in a reflexive space also
$\sup_n \|\sum_{k=1}^n \frac{T^k x}k\| \infty$
is equivalent to the convergence.
We also show that $-\sum_{k=1}^\infty \frac{T^k}k$ (which converges on
$(I-T)X$) is precisely the infinitesimal generator of the
semigroup $(I-T)^r\,_{|{\overline{(I-T)X}}}$.
Keywords:
power bounded operator real complex banach space study convergence one sided ergodic hilbert transform lim sum frac k prove weak strong convergence equivalent reflexive space sup sum frac k infty equivalent convergence sum infty frac which converges i t precisely infinitesimal generator semigroup i t overline i t
Affiliations des auteurs :
Guy Cohen 
1
;
Christophe Cuny 
2
;
Michael Lin 
3
1
Department of Electrical Engineering Ben-Gurion University Beer Sheva 84105, Israel
2
Equipe ERIM University of New Caledonia Nouméa, New Caledonia
3
Department of Mathematics Ben-Gurion University Beer Sheva 84105, Israel
@article{10_4064_sm196_3_3,
author = {Guy Cohen and Christophe Cuny and Michael Lin},
title = {The one-sided ergodic {Hilbert} transform in {Banach} spaces},
journal = {Studia Mathematica},
pages = {251--263},
year = {2010},
volume = {196},
number = {3},
doi = {10.4064/sm196-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-3-3/}
}
TY - JOUR
AU - Guy Cohen
AU - Christophe Cuny
AU - Michael Lin
TI - The one-sided ergodic Hilbert transform in Banach spaces
JO - Studia Mathematica
PY - 2010
SP - 251
EP - 263
VL - 196
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm196-3-3/
DO - 10.4064/sm196-3-3
LA - en
ID - 10_4064_sm196_3_3
ER -
%0 Journal Article
%A Guy Cohen
%A Christophe Cuny
%A Michael Lin
%T The one-sided ergodic Hilbert transform in Banach spaces
%J Studia Mathematica
%D 2010
%P 251-263
%V 196
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-3-3/
%R 10.4064/sm196-3-3
%G en
%F 10_4064_sm196_3_3
Guy Cohen; Christophe Cuny; Michael Lin. The one-sided ergodic Hilbert transform in Banach spaces. Studia Mathematica, Tome 196 (2010) no. 3, pp. 251-263. doi: 10.4064/sm196-3-3