Equivalence of measures of smoothness in $L_p(S^{d-1})$, $1 p \infty $
Studia Mathematica, Tome 196 (2010) no. 2, pp. 179-205

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose $\widetilde{\mit\Delta} $ is the Laplace–Beltrami operator on the sphere $S^{d-1},$ $\Delta ^k_\rho f(x) = \Delta _\rho \Delta ^{k-1}_\rho f(x)$ and $ \Delta _\rho f(x) = f(\rho x) - f(x)$ where $\rho \in SO(d) .$ Then $$ \omega ^m (f,t)_{L_p(S^{d-1})} \equiv \sup\{\Vert \Delta ^m_\rho f\Vert _{L_p(S^{d-1})}: \rho \in SO(d), \, \max_{x\in S^{d-1}} \rho x\cdot x \ge \cos t\} $$ and $$ \widetilde K_m(f,t^m)_p\equiv \inf \{\Vert f-g\Vert _{L_p(S^{d-1})} + t^m\Vert (-\widetilde{\mit\Delta} )^{m/2}g\Vert _{L_p(S^{d-1})} :g\in {\cal D}((-\widetilde{\mit\Delta} )^{m/2})\} $$ are equivalent for $1 p \infty .$ We note that for even $m$ the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for $L_p(S^{d-1})$ given in this paper plays a significant role in the proof.
DOI : 10.4064/sm196-2-5
Keywords: suppose widetilde mit delta laplace beltrami operator sphere d delta rho delta rho delta k rho delta rho rho where rho omega d equiv sup vert delta rho vert d rho max d rho cdot cos widetilde t equiv inf vert f g vert d vert widetilde mit delta vert d cal widetilde mit delta equivalent infty note even relation recently investigated second author equivalence yields extension results sharp jackson inequalities sphere strong converse inequality d given paper plays significant role proof

F. Dai 1 ; Z. Ditzian 1 ; Hongwei Huang 2

1 Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1
2 School of Mathematical Sciences Xiamen University 361005, Xiamen, Fujian China
@article{10_4064_sm196_2_5,
     author = {F. Dai and Z. Ditzian and Hongwei Huang},
     title = {Equivalence of measures of  smoothness in $L_p(S^{d-1})$,
$1< p< \infty  $},
     journal = {Studia Mathematica},
     pages = {179--205},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2010},
     doi = {10.4064/sm196-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/}
}
TY  - JOUR
AU  - F. Dai
AU  - Z. Ditzian
AU  - Hongwei Huang
TI  - Equivalence of measures of  smoothness in $L_p(S^{d-1})$,
$1< p< \infty  $
JO  - Studia Mathematica
PY  - 2010
SP  - 179
EP  - 205
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/
DO  - 10.4064/sm196-2-5
LA  - en
ID  - 10_4064_sm196_2_5
ER  - 
%0 Journal Article
%A F. Dai
%A Z. Ditzian
%A Hongwei Huang
%T Equivalence of measures of  smoothness in $L_p(S^{d-1})$,
$1< p< \infty  $
%J Studia Mathematica
%D 2010
%P 179-205
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/
%R 10.4064/sm196-2-5
%G en
%F 10_4064_sm196_2_5
F. Dai; Z. Ditzian; Hongwei Huang. Equivalence of measures of  smoothness in $L_p(S^{d-1})$,
$1< p< \infty  $. Studia Mathematica, Tome 196 (2010) no. 2, pp. 179-205. doi: 10.4064/sm196-2-5

Cité par Sources :