1Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1 2School of Mathematical Sciences Xiamen University 361005, Xiamen, Fujian China
Studia Mathematica, Tome 196 (2010) no. 2, pp. 179-205
Suppose $\widetilde{\mit\Delta} $ is the Laplace–Beltrami
operator on the sphere $S^{d-1},$$\Delta ^k_\rho f(x) =
\Delta _\rho \Delta ^{k-1}_\rho f(x)$ and $ \Delta _\rho f(x) =
f(\rho x) - f(x)$ where $\rho \in SO(d) .$ Then
$$
\omega ^m (f,t)_{L_p(S^{d-1})} \equiv \sup\{\Vert \Delta ^m_\rho
f\Vert _{L_p(S^{d-1})}: \rho \in SO(d), \, \max_{x\in S^{d-1}}
\rho x\cdot x \ge \cos t\}
$$
and
$$
\widetilde K_m(f,t^m)_p\equiv \inf \{\Vert f-g\Vert _{L_p(S^{d-1})} +
t^m\Vert (-\widetilde{\mit\Delta} )^{m/2}g\Vert _{L_p(S^{d-1})} :g\in
{\cal D}((-\widetilde{\mit\Delta} )^{m/2})\}
$$
are equivalent for $1 p \infty .$ We note that for even $m$ the
relation was recently investigated by the second author. The
equivalence yields an extension of the results on sharp Jackson
inequalities on the sphere. A new strong converse inequality for
$L_p(S^{d-1})$ given in this paper plays a significant role in the
proof.
Keywords:
suppose widetilde mit delta laplace beltrami operator sphere d delta rho delta rho delta k rho delta rho rho where rho omega d equiv sup vert delta rho vert d rho max d rho cdot cos widetilde t equiv inf vert f g vert d vert widetilde mit delta vert d cal widetilde mit delta equivalent infty note even relation recently investigated second author equivalence yields extension results sharp jackson inequalities sphere strong converse inequality d given paper plays significant role proof
Affiliations des auteurs :
F. Dai 
1
;
Z. Ditzian 
1
;
Hongwei Huang 
2
1
Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1
2
School of Mathematical Sciences Xiamen University 361005, Xiamen, Fujian China
@article{10_4064_sm196_2_5,
author = {F. Dai and Z. Ditzian and Hongwei Huang},
title = {Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $},
journal = {Studia Mathematica},
pages = {179--205},
year = {2010},
volume = {196},
number = {2},
doi = {10.4064/sm196-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/}
}
TY - JOUR
AU - F. Dai
AU - Z. Ditzian
AU - Hongwei Huang
TI - Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $
JO - Studia Mathematica
PY - 2010
SP - 179
EP - 205
VL - 196
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/
DO - 10.4064/sm196-2-5
LA - en
ID - 10_4064_sm196_2_5
ER -
%0 Journal Article
%A F. Dai
%A Z. Ditzian
%A Hongwei Huang
%T Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $
%J Studia Mathematica
%D 2010
%P 179-205
%V 196
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/
%R 10.4064/sm196-2-5
%G en
%F 10_4064_sm196_2_5
F. Dai; Z. Ditzian; Hongwei Huang. Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $. Studia Mathematica, Tome 196 (2010) no. 2, pp. 179-205. doi: 10.4064/sm196-2-5