Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1 p \infty $
Studia Mathematica, Tome 196 (2010) no. 2, pp. 179-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose $\widetilde{\mit\Delta} $ is the Laplace–Beltrami
operator on the sphere $S^{d-1},$ $\Delta ^k_\rho f(x) =
\Delta _\rho \Delta ^{k-1}_\rho f(x)$ and $ \Delta _\rho f(x) =
f(\rho x) - f(x)$ where $\rho \in SO(d) .$ Then
$$
\omega ^m (f,t)_{L_p(S^{d-1})} \equiv \sup\{\Vert \Delta ^m_\rho
f\Vert _{L_p(S^{d-1})}: \rho \in SO(d), \, \max_{x\in S^{d-1}}
\rho x\cdot x \ge \cos t\}
$$
and
$$
\widetilde K_m(f,t^m)_p\equiv \inf \{\Vert f-g\Vert _{L_p(S^{d-1})} +
t^m\Vert (-\widetilde{\mit\Delta} )^{m/2}g\Vert _{L_p(S^{d-1})} :g\in
{\cal D}((-\widetilde{\mit\Delta} )^{m/2})\}
$$
are equivalent for $1 p \infty .$ We note that for even $m$ the
relation was recently investigated by the second author. The
equivalence yields an extension of the results on sharp Jackson
inequalities on the sphere. A new strong converse inequality for
$L_p(S^{d-1})$ given in this paper plays a significant role in the
proof.
Keywords:
suppose widetilde mit delta laplace beltrami operator sphere d delta rho delta rho delta k rho delta rho rho where rho omega d equiv sup vert delta rho vert d rho max d rho cdot cos widetilde t equiv inf vert f g vert d vert widetilde mit delta vert d cal widetilde mit delta equivalent infty note even relation recently investigated second author equivalence yields extension results sharp jackson inequalities sphere strong converse inequality d given paper plays significant role proof
Affiliations des auteurs :
F. Dai 1 ; Z. Ditzian 1 ; Hongwei Huang 2
@article{10_4064_sm196_2_5,
author = {F. Dai and Z. Ditzian and Hongwei Huang},
title = {Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $},
journal = {Studia Mathematica},
pages = {179--205},
publisher = {mathdoc},
volume = {196},
number = {2},
year = {2010},
doi = {10.4064/sm196-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/}
}
TY - JOUR
AU - F. Dai
AU - Z. Ditzian
AU - Hongwei Huang
TI - Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $
JO - Studia Mathematica
PY - 2010
SP - 179
EP - 205
VL - 196
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/
DO - 10.4064/sm196-2-5
LA - en
ID - 10_4064_sm196_2_5
ER -
%0 Journal Article
%A F. Dai
%A Z. Ditzian
%A Hongwei Huang
%T Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $
%J Studia Mathematica
%D 2010
%P 179-205
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-5/
%R 10.4064/sm196-2-5
%G en
%F 10_4064_sm196_2_5
F. Dai; Z. Ditzian; Hongwei Huang. Equivalence of measures of smoothness in $L_p(S^{d-1})$,
$1< p< \infty $. Studia Mathematica, Tome 196 (2010) no. 2, pp. 179-205. doi: 10.4064/sm196-2-5
Cité par Sources :