The rectifiable distance in the unitary Fredholm group
Studia Mathematica, Tome 196 (2010) no. 2, pp. 151-178
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $U_{\rm c}(\mathcal{H})=\{u: u \hbox{ unitary and } u-1 \hbox{ compact}\}$
stand for the unitary Fredholm group. We prove the following convexity
result. Denote by $d_\infty$ the rectifiable distance induced by the
Finsler metric given by the operator norm in $U_{\rm c}(\mathcal{H})$. If
$u_0,u_1,u\in U_{\rm c}(\mathcal{H})$ and the geodesic $\beta$ joining $u_0$
and $u_1$ in $U_{\rm c}(\mathcal{H})$ satisfy $d_\infty(u,\beta)\pi/2$, then
the map $f(s)=d_\infty(u,\beta(s))$ is convex for $s\in[0,1]$. In
particular, the convexity radius of the geodesic balls in $U_{\rm c}({\mathcal
H})$ is $\pi/4$. The same convexity property holds in the
$p$-Schatten unitary groups $U_p(\mathcal{H})=\{u: u$ unitary and
$u-1$ in the $p$-Schatten class$\}$ for $p$ an even
integer, $p\ge 4$ (in this case, the distance is strictly convex). The
same results hold in the unitary group of a $C^*$-algebra with a
faithful finite trace. We apply this convexity result to establish the
existence of curves of minimal length with given initial conditions,
in the unitary orbit of an operator, under the action of the Fredholm
group. We characterize self-adjoint operators $A$ such that this orbit
is a submanifold (of the affine space $A+\mathcal{K}(\mathcal{H})$, where
$\mathcal{K}(\mathcal{H})=\hbox{compact operators}$).
Keywords:
mathcal hbox unitary u hbox compact stand unitary fredholm group prove following convexity result denote infty rectifiable distance induced finsler metric given operator norm mathcal mathcal geodesic beta joining mathcal satisfy infty beta map infty beta convex particular convexity radius geodesic balls mathcal convexity property holds p schatten unitary groups mathcal unitary u p schatten class even integer distance strictly convex results unitary group * algebra faithful finite trace apply convexity result establish existence curves minimal length given initial conditions unitary orbit operator under action fredholm group characterize self adjoint operators orbit submanifold affine space mathcal mathcal where mathcal mathcal hbox compact operators
Affiliations des auteurs :
Esteban Andruchow 1 ; Gabriel Larotonda 1
@article{10_4064_sm196_2_4,
author = {Esteban Andruchow and Gabriel Larotonda},
title = {The rectifiable distance in the unitary {Fredholm} group},
journal = {Studia Mathematica},
pages = {151--178},
year = {2010},
volume = {196},
number = {2},
doi = {10.4064/sm196-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-4/}
}
TY - JOUR AU - Esteban Andruchow AU - Gabriel Larotonda TI - The rectifiable distance in the unitary Fredholm group JO - Studia Mathematica PY - 2010 SP - 151 EP - 178 VL - 196 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-4/ DO - 10.4064/sm196-2-4 LA - en ID - 10_4064_sm196_2_4 ER -
Esteban Andruchow; Gabriel Larotonda. The rectifiable distance in the unitary Fredholm group. Studia Mathematica, Tome 196 (2010) no. 2, pp. 151-178. doi: 10.4064/sm196-2-4
Cité par Sources :