The rectifiable distance in the unitary Fredholm group
Studia Mathematica, Tome 196 (2010) no. 2, pp. 151-178 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $U_{\rm c}(\mathcal{H})=\{u: u \hbox{ unitary and } u-1 \hbox{ compact}\}$ stand for the unitary Fredholm group. We prove the following convexity result. Denote by $d_\infty$ the rectifiable distance induced by the Finsler metric given by the operator norm in $U_{\rm c}(\mathcal{H})$. If $u_0,u_1,u\in U_{\rm c}(\mathcal{H})$ and the geodesic $\beta$ joining $u_0$ and $u_1$ in $U_{\rm c}(\mathcal{H})$ satisfy $d_\infty(u,\beta)\pi/2$, then the map $f(s)=d_\infty(u,\beta(s))$ is convex for $s\in[0,1]$. In particular, the convexity radius of the geodesic balls in $U_{\rm c}({\mathcal H})$ is $\pi/4$. The same convexity property holds in the $p$-Schatten unitary groups $U_p(\mathcal{H})=\{u: u$ unitary and $u-1$ in the $p$-Schatten class$\}$ for $p$ an even integer, $p\ge 4$ (in this case, the distance is strictly convex). The same results hold in the unitary group of a $C^*$-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators $A$ such that this orbit is a submanifold (of the affine space $A+\mathcal{K}(\mathcal{H})$, where $\mathcal{K}(\mathcal{H})=\hbox{compact operators}$).
DOI : 10.4064/sm196-2-4
Keywords: mathcal hbox unitary u hbox compact stand unitary fredholm group prove following convexity result denote infty rectifiable distance induced finsler metric given operator norm mathcal mathcal geodesic beta joining mathcal satisfy infty beta map infty beta convex particular convexity radius geodesic balls mathcal convexity property holds p schatten unitary groups mathcal unitary u p schatten class even integer distance strictly convex results unitary group * algebra faithful finite trace apply convexity result establish existence curves minimal length given initial conditions unitary orbit operator under action fredholm group characterize self adjoint operators orbit submanifold affine space mathcal mathcal where mathcal mathcal hbox compact operators

Esteban Andruchow 1 ; Gabriel Larotonda 1

1 Instituto de Ciencias Universidad Nacional de General Sarmiento J. M. Gutierrez 1150 (B1613GSX) Los Polvorines Buenos Aires, Argentina and Instituto Argentino de Matemática “Alberto Calderón”, CONICET
@article{10_4064_sm196_2_4,
     author = {Esteban Andruchow and Gabriel Larotonda},
     title = {The rectifiable distance in the unitary {Fredholm} group},
     journal = {Studia Mathematica},
     pages = {151--178},
     year = {2010},
     volume = {196},
     number = {2},
     doi = {10.4064/sm196-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-4/}
}
TY  - JOUR
AU  - Esteban Andruchow
AU  - Gabriel Larotonda
TI  - The rectifiable distance in the unitary Fredholm group
JO  - Studia Mathematica
PY  - 2010
SP  - 151
EP  - 178
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-4/
DO  - 10.4064/sm196-2-4
LA  - en
ID  - 10_4064_sm196_2_4
ER  - 
%0 Journal Article
%A Esteban Andruchow
%A Gabriel Larotonda
%T The rectifiable distance in the unitary Fredholm group
%J Studia Mathematica
%D 2010
%P 151-178
%V 196
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-2-4/
%R 10.4064/sm196-2-4
%G en
%F 10_4064_sm196_2_4
Esteban Andruchow; Gabriel Larotonda. The rectifiable distance in the unitary Fredholm group. Studia Mathematica, Tome 196 (2010) no. 2, pp. 151-178. doi: 10.4064/sm196-2-4

Cité par Sources :