The power boundedness and resolvent
conditions for functions of the classical Volterra operator
Studia Mathematica, Tome 196 (2010) no. 1, pp. 41-63
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\phi (z)$ be an analytic function in a disk
$|z| \rho $ (in particular, a polynomial) such that $\phi (0)=1$, $\phi (z)\not \equiv 1$. Let $V$ be the operator of integration in $L_p(0,1)$, $1\leq p\leq \infty $. Then $\phi (V)$ is power bounded if and only if $\phi '(0)0$ and $p=2$. In this case some explicit upper bounds are given for the norms of $\phi (V)^n$ and subsequent differences between the powers. It is shown that $\phi (V)$ never satisfies the Ritt condition but the Kreiss condition is satisfied if and only if $\phi '(0)0$, at least in the polynomial case.
Keywords:
phi analytic function disk rho particular polynomial phi phi equiv operator integration leq leq infty phi power bounded only phi explicit upper bounds given norms phi subsequent differences between powers shown phi never satisfies ritt condition kreiss condition satisfied only phi least polynomial
Affiliations des auteurs :
Yuri Lyubich  1
@article{10_4064_sm196_1_4,
author = {Yuri Lyubich},
title = {The power boundedness and resolvent
conditions for functions of the classical {Volterra} operator},
journal = {Studia Mathematica},
pages = {41--63},
year = {2010},
volume = {196},
number = {1},
doi = {10.4064/sm196-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-4/}
}
TY - JOUR AU - Yuri Lyubich TI - The power boundedness and resolvent conditions for functions of the classical Volterra operator JO - Studia Mathematica PY - 2010 SP - 41 EP - 63 VL - 196 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-4/ DO - 10.4064/sm196-1-4 LA - en ID - 10_4064_sm196_1_4 ER -
Yuri Lyubich. The power boundedness and resolvent conditions for functions of the classical Volterra operator. Studia Mathematica, Tome 196 (2010) no. 1, pp. 41-63. doi: 10.4064/sm196-1-4
Cité par Sources :