Convergence of multiple ergodic averages along cubes for several commuting transformations
Studia Mathematica, Tome 196 (2010) no. 1, pp. 13-22 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove the norm convergence of multiple ergodic averages along cubes for several commuting transformations, and derive corresponding combinatorial results. The method we use relies primarily on the “magic extension” established recently by B. Host.
DOI : 10.4064/sm196-1-2
Keywords: prove norm convergence multiple ergodic averages along cubes several commuting transformations derive corresponding combinatorial results method relies primarily magic extension established recently host

Qing Chu  1

1 Laboratoire d'analyse et de mathématiques appliquées Université Paris-Est UMR CNRS 8050 5 bd Descartes 77454 Marne-la-Vallée Cedex 2, France
@article{10_4064_sm196_1_2,
     author = {Qing Chu},
     title = {Convergence of multiple ergodic averages along cubes
 for several commuting transformations},
     journal = {Studia Mathematica},
     pages = {13--22},
     year = {2010},
     volume = {196},
     number = {1},
     doi = {10.4064/sm196-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-2/}
}
TY  - JOUR
AU  - Qing Chu
TI  - Convergence of multiple ergodic averages along cubes
 for several commuting transformations
JO  - Studia Mathematica
PY  - 2010
SP  - 13
EP  - 22
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-2/
DO  - 10.4064/sm196-1-2
LA  - en
ID  - 10_4064_sm196_1_2
ER  - 
%0 Journal Article
%A Qing Chu
%T Convergence of multiple ergodic averages along cubes
 for several commuting transformations
%J Studia Mathematica
%D 2010
%P 13-22
%V 196
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-2/
%R 10.4064/sm196-1-2
%G en
%F 10_4064_sm196_1_2
Qing Chu. Convergence of multiple ergodic averages along cubes
 for several commuting transformations. Studia Mathematica, Tome 196 (2010) no. 1, pp. 13-22. doi: 10.4064/sm196-1-2

Cité par Sources :