Convergence of multiple ergodic averages along cubes
for several commuting transformations
Studia Mathematica, Tome 196 (2010) no. 1, pp. 13-22
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the norm convergence of multiple ergodic averages along cubes for several commuting transformations, and derive corresponding combinatorial results. The method we use relies primarily on the “magic extension” established recently by B. Host.
Keywords:
prove norm convergence multiple ergodic averages along cubes several commuting transformations derive corresponding combinatorial results method relies primarily magic extension established recently host
Affiliations des auteurs :
Qing Chu  1
@article{10_4064_sm196_1_2,
author = {Qing Chu},
title = {Convergence of multiple ergodic averages along cubes
for several commuting transformations},
journal = {Studia Mathematica},
pages = {13--22},
year = {2010},
volume = {196},
number = {1},
doi = {10.4064/sm196-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-2/}
}
TY - JOUR AU - Qing Chu TI - Convergence of multiple ergodic averages along cubes for several commuting transformations JO - Studia Mathematica PY - 2010 SP - 13 EP - 22 VL - 196 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-2/ DO - 10.4064/sm196-1-2 LA - en ID - 10_4064_sm196_1_2 ER -
Qing Chu. Convergence of multiple ergodic averages along cubes for several commuting transformations. Studia Mathematica, Tome 196 (2010) no. 1, pp. 13-22. doi: 10.4064/sm196-1-2
Cité par Sources :