Schauder bases and the bounded approximation property in separable Banach spaces
Studia Mathematica, Tome 196 (2010) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $E$ be a separable Banach space with the $\lambda$-bounded approximation property. We show that for each $\epsilon >0$ there is a Banach space $F$ with a Schauder basis such that $E$ is isometrically isomorphic to a $1$-complemented subspace of $F$ and, moreover, the sequence $(T_{n})$ of canonical projections in $F$ has the properties $$ \sup_{n \in \mathbb{N}} \|T_{n}\| \le \lambda+ \epsilon \quad\hbox{and}\quad \limsup_{n \rightarrow \infty} \|T_{n}\| \le \lambda. $$ This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.
DOI : 10.4064/sm196-1-1
Keywords: separable banach space lambda bounded approximation property each epsilon there banach space schauder basis isometrically isomorphic complemented subspace moreover sequence canonical projections has properties sup mathbb lambda epsilon quad hbox quad limsup rightarrow infty lambda sharp quantitative version classical result obtained independently czy ski johnson rosenthal zippin

Jorge Mujica  1   ; Daniela M. Vieira  2

1 IMECC-UNICAMP Caixa Postal 6065 13083-970 Campinas, SP, Brazil
2 IMECC-UNICAMP Caixa Postal 6065 13083-970 Campinas, SP, Brazil and Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 66281 05315-970 São Paulo, SP, Brazil
@article{10_4064_sm196_1_1,
     author = {Jorge Mujica and Daniela M. Vieira},
     title = {Schauder bases and the bounded approximation
 property in separable {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {1--12},
     year = {2010},
     volume = {196},
     number = {1},
     doi = {10.4064/sm196-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-1/}
}
TY  - JOUR
AU  - Jorge Mujica
AU  - Daniela M. Vieira
TI  - Schauder bases and the bounded approximation
 property in separable Banach spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 1
EP  - 12
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-1/
DO  - 10.4064/sm196-1-1
LA  - en
ID  - 10_4064_sm196_1_1
ER  - 
%0 Journal Article
%A Jorge Mujica
%A Daniela M. Vieira
%T Schauder bases and the bounded approximation
 property in separable Banach spaces
%J Studia Mathematica
%D 2010
%P 1-12
%V 196
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm196-1-1/
%R 10.4064/sm196-1-1
%G en
%F 10_4064_sm196_1_1
Jorge Mujica; Daniela M. Vieira. Schauder bases and the bounded approximation
 property in separable Banach spaces. Studia Mathematica, Tome 196 (2010) no. 1, pp. 1-12. doi: 10.4064/sm196-1-1

Cité par Sources :