Strict u-ideals in Banach spaces
Studia Mathematica, Tome 195 (2009) no. 3, pp. 275-285
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study strict u-ideals in Banach spaces. A Banach space $X$ is a strict u-ideal in its bidual when the canonical decomposition $X^{***} = X^* \oplus X^\perp $ is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if $X$ is a strict u-ideal in a Banach space $Y$ then $X$ contains $c_0$. We also show that $\ell _\infty $ is not a u-ideal.
Keywords:
study strict u ideals banach spaces banach space strict u ideal its bidual canonical decomposition *** * oplus perp unconditional characterize banach spaces which strict u ideals their bidual strict u ideal banach space contains ell infty u ideal
Affiliations des auteurs :
Vegard Lima 1 ; Åsvald Lima 2
@article{10_4064_sm195_3_6,
author = {Vegard Lima and \r{A}svald Lima},
title = {Strict u-ideals in {Banach} spaces},
journal = {Studia Mathematica},
pages = {275--285},
publisher = {mathdoc},
volume = {195},
number = {3},
year = {2009},
doi = {10.4064/sm195-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-6/}
}
Vegard Lima; Åsvald Lima. Strict u-ideals in Banach spaces. Studia Mathematica, Tome 195 (2009) no. 3, pp. 275-285. doi: 10.4064/sm195-3-6
Cité par Sources :