Strict u-ideals in Banach spaces
Studia Mathematica, Tome 195 (2009) no. 3, pp. 275-285

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study strict u-ideals in Banach spaces. A Banach space $X$ is a strict u-ideal in its bidual when the canonical decomposition $X^{***} = X^* \oplus X^\perp $ is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if $X$ is a strict u-ideal in a Banach space $Y$ then $X$ contains $c_0$. We also show that $\ell _\infty $ is not a u-ideal.
DOI : 10.4064/sm195-3-6
Keywords: study strict u ideals banach spaces banach space strict u ideal its bidual canonical decomposition *** * oplus perp unconditional characterize banach spaces which strict u ideals their bidual strict u ideal banach space contains ell infty u ideal

Vegard Lima 1 ; Åsvald Lima 2

1 Aalesund University College Service Box 17 N-6025 Ålesund, Norway
2 Department of Mathematics University of Agder Serviceboks 422 4604 Kristiansand, Norway
@article{10_4064_sm195_3_6,
     author = {Vegard Lima and \r{A}svald Lima},
     title = {Strict u-ideals in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {275--285},
     publisher = {mathdoc},
     volume = {195},
     number = {3},
     year = {2009},
     doi = {10.4064/sm195-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-6/}
}
TY  - JOUR
AU  - Vegard Lima
AU  - Åsvald Lima
TI  - Strict u-ideals in Banach spaces
JO  - Studia Mathematica
PY  - 2009
SP  - 275
EP  - 285
VL  - 195
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-6/
DO  - 10.4064/sm195-3-6
LA  - en
ID  - 10_4064_sm195_3_6
ER  - 
%0 Journal Article
%A Vegard Lima
%A Åsvald Lima
%T Strict u-ideals in Banach spaces
%J Studia Mathematica
%D 2009
%P 275-285
%V 195
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-6/
%R 10.4064/sm195-3-6
%G en
%F 10_4064_sm195_3_6
Vegard Lima; Åsvald Lima. Strict u-ideals in Banach spaces. Studia Mathematica, Tome 195 (2009) no. 3, pp. 275-285. doi: 10.4064/sm195-3-6

Cité par Sources :