Variation of quasiconformal mappings on lines
Studia Mathematica, Tome 195 (2009) no. 3, pp. 257-274
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain improved regularity of homeomorphic solutions of the reduced Beltrami equation, as compared to the standard Beltrami equation. Such an improvement is not possible in terms of Hölder or Sobolev regularity; instead, our results concern the generalized variation of restrictions to lines. Specifically, we prove that the restriction to any line segment has finite $p$-variation for all $p>1$ but not necessarily for $p=1$.
Keywords:
obtain improved regularity homeomorphic solutions reduced beltrami equation compared standard beltrami equation improvement possible terms lder sobolev regularity instead results concern generalized variation restrictions lines specifically prove restriction line segment has finite p variation necessarily
Affiliations des auteurs :
Leonid V. Kovalev 1 ; Jani Onninen 1
@article{10_4064_sm195_3_5,
author = {Leonid V. Kovalev and Jani Onninen},
title = {Variation of quasiconformal mappings on lines},
journal = {Studia Mathematica},
pages = {257--274},
publisher = {mathdoc},
volume = {195},
number = {3},
year = {2009},
doi = {10.4064/sm195-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-5/}
}
TY - JOUR AU - Leonid V. Kovalev AU - Jani Onninen TI - Variation of quasiconformal mappings on lines JO - Studia Mathematica PY - 2009 SP - 257 EP - 274 VL - 195 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-5/ DO - 10.4064/sm195-3-5 LA - en ID - 10_4064_sm195_3_5 ER -
Leonid V. Kovalev; Jani Onninen. Variation of quasiconformal mappings on lines. Studia Mathematica, Tome 195 (2009) no. 3, pp. 257-274. doi: 10.4064/sm195-3-5
Cité par Sources :