Johnson's projection, Kalton's property $(M^\ast)$,
and $M$-ideals of compact operators
Studia Mathematica, Tome 195 (2009) no. 3, pp. 243-255
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ and $Y$ be Banach spaces. We give a “non-separable” proof of the
Kalton–Werner–Lima–Oja theorem
that the subspace $\mathcal{K}(X,X)$ of compact operators forms an $M$-ideal in the space
$\mathcal{L}(X,X)$ of all continuous linear operators from $X$ to $X$
if and only if $X$ has Kalton's property $(M^\ast)$ and the metric compact approximation property.
Our proof is a quick consequence of two main results.
First, we describe how Johnson's projection $P$ on $\mathcal{L}(X,Y)^\ast$ applies to $f\in\mathcal{L}(X,Y)^\ast$ when $f$ is represented
via a Borel (with respect to the relative weak$^\ast$ topology) measure on
$\overline{B_{{X^{\ast\ast}}}\otimes B_{Y^{\ast}}}^{w^\ast}\subset\mathcal{L}(X,Y)^\ast$:
If $Y^{\ast}$ has the Radon–Nikodým property, then $P$ “passes under the integral sign”.
Our basic theorem en route to this description—a structure theorem for Borel probability measures on
$\overline{B_{{X^{\ast\ast}}}\otimes B_{Y^{\ast}}}^{w^\ast}\!$—also
yields a description of $\mathcal{K}(X,Y)^\ast$ due to Feder and Saphar.
Second, we show that property $(M^\ast)$ for $X$ is equivalent to every functional in $\overline{B_{{X^{\ast\ast}}}\otimes B_{X^{\ast}}}^{w^\ast}$
behaving as if $\mathcal{K}(X,X)$ were an $M$-ideal in $\mathcal{L}(X,X)$.
Keywords:
banach spaces non separable proof kalton werner lima oja theorem subspace mathcal compact operators forms m ideal space mathcal continuous linear operators only has kaltons property ast metric compact approximation property proof quick consequence main results first describe johnsons projection mathcal ast applies mathcal ast represented via borel respect relative weak ast topology measure overline ast ast otimes ast ast subset mathcal ast ast has radon nikod property passes under integral sign basic theorem route description structure theorem borel probability measures overline ast ast otimes ast ast yields description mathcal ast due feder saphar second property ast equivalent every functional overline ast ast otimes ast ast behaving mathcal m ideal mathcal
Affiliations des auteurs :
Olav Nygaard 1 ; Märt Põldvere 2
@article{10_4064_sm195_3_4,
author = {Olav Nygaard and M\"art P\~oldvere},
title = {Johnson's projection, {Kalton's} property $(M^\ast)$,
and $M$-ideals of compact operators},
journal = {Studia Mathematica},
pages = {243--255},
publisher = {mathdoc},
volume = {195},
number = {3},
year = {2009},
doi = {10.4064/sm195-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-4/}
}
TY - JOUR AU - Olav Nygaard AU - Märt Põldvere TI - Johnson's projection, Kalton's property $(M^\ast)$, and $M$-ideals of compact operators JO - Studia Mathematica PY - 2009 SP - 243 EP - 255 VL - 195 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-4/ DO - 10.4064/sm195-3-4 LA - en ID - 10_4064_sm195_3_4 ER -
%0 Journal Article %A Olav Nygaard %A Märt Põldvere %T Johnson's projection, Kalton's property $(M^\ast)$, and $M$-ideals of compact operators %J Studia Mathematica %D 2009 %P 243-255 %V 195 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-4/ %R 10.4064/sm195-3-4 %G en %F 10_4064_sm195_3_4
Olav Nygaard; Märt Põldvere. Johnson's projection, Kalton's property $(M^\ast)$, and $M$-ideals of compact operators. Studia Mathematica, Tome 195 (2009) no. 3, pp. 243-255. doi: 10.4064/sm195-3-4
Cité par Sources :