Let
$\varepsilon>0$ and $1\leq k\leq n$ and let $\{W_l\}_{l=1}^{p}$ be
affine subspaces of $\mathbb{R}^n$, each of dimension at most $k$.
Let $m=O(\varepsilon^{-2}(k+\log{p}))$ if $\varepsilon 1$, and
$m=O(k+{\log{p}}/{\!\log(1+\varepsilon)})$ if
$\varepsilon\geq1$. We prove that there is a linear map
$H:\mathbb{R}^n\rightarrow\mathbb{R}^m$ such that for all $1\leq
l\leq p$ and $x,y\in W_l$ we have
$\|x-y\|_2\leq\|H(x)-H(y)\|_2\leq(1+\varepsilon)\|x-y\|_2$, i.e.
the distance distortion is at most $1+\varepsilon$. The estimate
on $m$ is tight in terms of $k$ and $p$ whenever $\varepsilon1$,
and is tight on $\varepsilon,k,p$ whenever $\varepsilon\geq1$. We
extend these results to embeddings into general normed spaces
$Y$.
Keywords:
varepsilon leq leq affine subspaces mathbb each dimension varepsilon log varepsilon log log varepsilon varepsilon geq prove there linear map mathbb rightarrow mathbb leq leq have x y leq h leq varepsilon x y distance distortion varepsilon estimate tight terms whenever varepsilon tight varepsilon whenever varepsilon geq extend these results embeddings general normed spaces
@article{10_4064_sm195_3_3,
author = {Alon Dmitriyuk and Yehoram Gordon},
title = {Generalizing the {Johnson{\textendash}Lindenstrauss} lemma to $k$-dimensional affine
subspaces},
journal = {Studia Mathematica},
pages = {227--241},
year = {2009},
volume = {195},
number = {3},
doi = {10.4064/sm195-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-3/}
}
TY - JOUR
AU - Alon Dmitriyuk
AU - Yehoram Gordon
TI - Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine
subspaces
JO - Studia Mathematica
PY - 2009
SP - 227
EP - 241
VL - 195
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-3/
DO - 10.4064/sm195-3-3
LA - en
ID - 10_4064_sm195_3_3
ER -
%0 Journal Article
%A Alon Dmitriyuk
%A Yehoram Gordon
%T Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine
subspaces
%J Studia Mathematica
%D 2009
%P 227-241
%V 195
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-3/
%R 10.4064/sm195-3-3
%G en
%F 10_4064_sm195_3_3
Alon Dmitriyuk; Yehoram Gordon. Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine
subspaces. Studia Mathematica, Tome 195 (2009) no. 3, pp. 227-241. doi: 10.4064/sm195-3-3