Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine subspaces
Studia Mathematica, Tome 195 (2009) no. 3, pp. 227-241

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varepsilon>0$ and $1\leq k\leq n$ and let $\{W_l\}_{l=1}^{p}$ be affine subspaces of $\mathbb{R}^n$, each of dimension at most $k$. Let $m=O(\varepsilon^{-2}(k+\log{p}))$ if $\varepsilon 1$, and $m=O(k+{\log{p}}/{\!\log(1+\varepsilon)})$ if $\varepsilon\geq1$. We prove that there is a linear map $H:\mathbb{R}^n\rightarrow\mathbb{R}^m$ such that for all $1\leq l\leq p$ and $x,y\in W_l$ we have $\|x-y\|_2\leq\|H(x)-H(y)\|_2\leq(1+\varepsilon)\|x-y\|_2$, i.e. the distance distortion is at most $1+\varepsilon$. The estimate on $m$ is tight in terms of $k$ and $p$ whenever $\varepsilon1$, and is tight on $\varepsilon,k,p$ whenever $\varepsilon\geq1$. We extend these results to embeddings into general normed spaces $Y$.
DOI : 10.4064/sm195-3-3
Keywords: varepsilon leq leq affine subspaces mathbb each dimension varepsilon log varepsilon log log varepsilon varepsilon geq prove there linear map mathbb rightarrow mathbb leq leq have x y leq h leq varepsilon x y distance distortion varepsilon estimate tight terms whenever varepsilon tight varepsilon whenever varepsilon geq extend these results embeddings general normed spaces

Alon Dmitriyuk 1 ; Yehoram Gordon 1

1 Department of Mathematics Technion Haifa 32000, Israel
@article{10_4064_sm195_3_3,
     author = {Alon Dmitriyuk and Yehoram Gordon},
     title = {Generalizing the {Johnson{\textendash}Lindenstrauss} lemma to $k$-dimensional affine
subspaces},
     journal = {Studia Mathematica},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {195},
     number = {3},
     year = {2009},
     doi = {10.4064/sm195-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-3/}
}
TY  - JOUR
AU  - Alon Dmitriyuk
AU  - Yehoram Gordon
TI  - Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine
subspaces
JO  - Studia Mathematica
PY  - 2009
SP  - 227
EP  - 241
VL  - 195
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-3/
DO  - 10.4064/sm195-3-3
LA  - en
ID  - 10_4064_sm195_3_3
ER  - 
%0 Journal Article
%A Alon Dmitriyuk
%A Yehoram Gordon
%T Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine
subspaces
%J Studia Mathematica
%D 2009
%P 227-241
%V 195
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-3/
%R 10.4064/sm195-3-3
%G en
%F 10_4064_sm195_3_3
Alon Dmitriyuk; Yehoram Gordon. Generalizing the Johnson–Lindenstrauss lemma to $k$-dimensional affine
subspaces. Studia Mathematica, Tome 195 (2009) no. 3, pp. 227-241. doi: 10.4064/sm195-3-3

Cité par Sources :