Quasinilpotent operators in operator Lie algebras II
Studia Mathematica, Tome 195 (2009) no. 2, pp. 193-200

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper, it is proved that the Banach algebra $\overline{{\cal A}({\cal L})}$, generated by a Lie algebra $\cal L$ of operators, consists of quasinilpotent operators if $\cal L$ consists of quasinilpotent operators and $\overline{{\cal A}({\cal L})}$ consists of polynomially compact operators. It is also proved that $\overline{{\cal A}({\cal L})}$ consists of quasinilpotent operators if $\cal L$ is an essentially nilpotent Engel Lie algebra generated by quasinilpotent operators. Finally, Banach algebras generated by essentially nilpotent Lie algebras are shown to be compactly quasinilpotent.
DOI : 10.4064/sm195-2-6
Mots-clés : paper proved banach algebra overline cal cal generated lie algebra cal operators consists quasinilpotent operators cal consists quasinilpotent operators overline cal cal consists polynomially compact operators proved overline cal cal consists quasinilpotent operators cal essentially nilpotent engel lie algebra generated quasinilpotent operators finally banach algebras generated essentially nilpotent lie algebras shown compactly quasinilpotent

Peng Cao 1

1 Department of Mathematics Beijing Institute of Technology Beijing, China, 100081
@article{10_4064_sm195_2_6,
     author = {Peng Cao},
     title = {Quasinilpotent operators in operator {Lie} algebras {II}},
     journal = {Studia Mathematica},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {195},
     number = {2},
     year = {2009},
     doi = {10.4064/sm195-2-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-2-6/}
}
TY  - JOUR
AU  - Peng Cao
TI  - Quasinilpotent operators in operator Lie algebras II
JO  - Studia Mathematica
PY  - 2009
SP  - 193
EP  - 200
VL  - 195
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm195-2-6/
DO  - 10.4064/sm195-2-6
LA  - de
ID  - 10_4064_sm195_2_6
ER  - 
%0 Journal Article
%A Peng Cao
%T Quasinilpotent operators in operator Lie algebras II
%J Studia Mathematica
%D 2009
%P 193-200
%V 195
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm195-2-6/
%R 10.4064/sm195-2-6
%G de
%F 10_4064_sm195_2_6
Peng Cao. Quasinilpotent operators in operator Lie algebras II. Studia Mathematica, Tome 195 (2009) no. 2, pp. 193-200. doi: 10.4064/sm195-2-6

Cité par Sources :