Littlewood–Paley $g$-functions with rough
kernels on homogeneous groups
Studia Mathematica, Tome 195 (2009) no. 1, pp. 51-86
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbb G$ be a homogeneousgroup on ${\mathbb R}^n$ whose
multiplication and inverse operations are polynomial maps. In 1999, T.
Tao proved that the singular integral operator with $L\log^+\!\!L$
function kernel on $\gg$ is both of type $(p,p)$ and of weak type
$(1,1)$. In this paper, the same results are proved for the
Littlewood–Paley $g$-functions
on $\mathbb G$
Keywords:
mathbb homogeneousgroup mathbb whose multiplication inverse operations polynomial maps tao proved singular integral operator log function kernel type weak type paper results proved littlewood paley g functions nbsp mathbb g
Affiliations des auteurs :
Yong Ding 1 ; Xinfeng Wu 2
@article{10_4064_sm195_1_4,
author = {Yong Ding and Xinfeng Wu},
title = {Littlewood{\textendash}Paley $g$-functions with rough
kernels on homogeneous groups},
journal = {Studia Mathematica},
pages = {51--86},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2009},
doi = {10.4064/sm195-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-1-4/}
}
TY - JOUR AU - Yong Ding AU - Xinfeng Wu TI - Littlewood–Paley $g$-functions with rough kernels on homogeneous groups JO - Studia Mathematica PY - 2009 SP - 51 EP - 86 VL - 195 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm195-1-4/ DO - 10.4064/sm195-1-4 LA - en ID - 10_4064_sm195_1_4 ER -
Yong Ding; Xinfeng Wu. Littlewood–Paley $g$-functions with rough kernels on homogeneous groups. Studia Mathematica, Tome 195 (2009) no. 1, pp. 51-86. doi: 10.4064/sm195-1-4
Cité par Sources :