On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution
Studia Mathematica, Tome 195 (2009) no. 1, pp. 11-29

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider $n\times n$ real symmetric and hermitian random matrices $H_{n}$ that are sums of a non-random matrix $H_{n}^{(0)}$ and of $m_{n}$ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if $m_{n}/n\rightarrow c\in [0,\infty )$ as $n\rightarrow \infty $, and the distribution of eigenvalues of $H_{n}^{(0)}$ and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of $H_{n}$ converges weakly in probability to the non-random limit, found by Marchenko and Pastur.
DOI : 10.4064/sm195-1-2
Keywords: consider times real symmetric hermitian random matrices sums non random matrix rank one matrices determined isotropic random vectors log concave probability law real amplitudes analog setting marchenko pastur mat prove rightarrow infty rightarrow infty distribution eigenvalues distribution amplitudes converge weakly distribution eigenvalues converges weakly probability non random limit found marchenko pastur

A. Pajor 1 ; L. Pastur 2

1 Department of Mathematics University Paris-Est Marne-la-Vallée, France
2 Theoretical Department Institute for Low Temperatures Kharkiv, Ukraine
@article{10_4064_sm195_1_2,
     author = {A. Pajor and L. Pastur},
     title = {On the limiting empirical measure of eigenvalues of
 the sum of rank one matrices with log-concave distribution},
     journal = {Studia Mathematica},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2009},
     doi = {10.4064/sm195-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-1-2/}
}
TY  - JOUR
AU  - A. Pajor
AU  - L. Pastur
TI  - On the limiting empirical measure of eigenvalues of
 the sum of rank one matrices with log-concave distribution
JO  - Studia Mathematica
PY  - 2009
SP  - 11
EP  - 29
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm195-1-2/
DO  - 10.4064/sm195-1-2
LA  - en
ID  - 10_4064_sm195_1_2
ER  - 
%0 Journal Article
%A A. Pajor
%A L. Pastur
%T On the limiting empirical measure of eigenvalues of
 the sum of rank one matrices with log-concave distribution
%J Studia Mathematica
%D 2009
%P 11-29
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm195-1-2/
%R 10.4064/sm195-1-2
%G en
%F 10_4064_sm195_1_2
A. Pajor; L. Pastur. On the limiting empirical measure of eigenvalues of
 the sum of rank one matrices with log-concave distribution. Studia Mathematica, Tome 195 (2009) no. 1, pp. 11-29. doi: 10.4064/sm195-1-2

Cité par Sources :