Isometries between groups of invertible
elements in Banach algebras
Studia Mathematica, Tome 194 (2009) no. 3, pp. 293-304
We show that if $T$ is an isometry (as metric spaces) from an open subgroup of the group of invertible elements in a unital semisimple commutative Banach algebra $A$ onto a open subgroup of the group of invertible elements in a unital Banach algebra $B$, then $T(1)^{-1}T$ is an isometrical group isomorphism. In particular, $T(1)^{-1}T$ extends to an isometrical real algebra isomorphism from $A$ onto $B$.
Keywords:
isometry metric spaces subgroup group invertible elements unital semisimple commutative banach algebra subgroup group invertible elements unital banach algebra isometrical group isomorphism particular extends isometrical real algebra isomorphism
Affiliations des auteurs :
Osamu Hatori  1
@article{10_4064_sm194_3_5,
author = {Osamu Hatori},
title = {Isometries between groups of invertible
elements in {Banach} algebras},
journal = {Studia Mathematica},
pages = {293--304},
year = {2009},
volume = {194},
number = {3},
doi = {10.4064/sm194-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-3-5/}
}
Osamu Hatori. Isometries between groups of invertible elements in Banach algebras. Studia Mathematica, Tome 194 (2009) no. 3, pp. 293-304. doi: 10.4064/sm194-3-5
Cité par Sources :