Regularity of the Hardy–Littlewood
maximal operator on block decreasing functions
Studia Mathematica, Tome 194 (2009) no. 3, pp. 253-277
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the Hardy–Littlewood maximal operator defined via an unconditional norm, acting on block decreasing functions. We show that the uncentered maximal operator maps block decreasing functions of special bounded variation to functions with integrable distributional derivatives, thus improving their regularity. In the special case of the maximal operator defined by the $\ell _\infty $-norm, that is, by averaging over cubes, the result extends to block decreasing functions of bounded variation, not necessarily special.
Keywords:
study hardy littlewood maximal operator defined via unconditional norm acting block decreasing functions uncentered maximal operator maps block decreasing functions special bounded variation functions integrable distributional derivatives improving their regularity special maximal operator defined ell infty norm averaging cubes result extends block decreasing functions bounded variation necessarily special
Affiliations des auteurs :
J. M. Aldaz 1 ; F. J. Pérez Lázaro 2
@article{10_4064_sm194_3_3,
author = {J. M. Aldaz and F. J. P\'erez L\'azaro},
title = {Regularity of the {Hardy{\textendash}Littlewood
} maximal operator on block decreasing functions},
journal = {Studia Mathematica},
pages = {253--277},
year = {2009},
volume = {194},
number = {3},
doi = {10.4064/sm194-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-3-3/}
}
TY - JOUR AU - J. M. Aldaz AU - F. J. Pérez Lázaro TI - Regularity of the Hardy–Littlewood maximal operator on block decreasing functions JO - Studia Mathematica PY - 2009 SP - 253 EP - 277 VL - 194 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm194-3-3/ DO - 10.4064/sm194-3-3 LA - en ID - 10_4064_sm194_3_3 ER -
J. M. Aldaz; F. J. Pérez Lázaro. Regularity of the Hardy–Littlewood maximal operator on block decreasing functions. Studia Mathematica, Tome 194 (2009) no. 3, pp. 253-277. doi: 10.4064/sm194-3-3
Cité par Sources :