1Department of Mathematics South China University of Technology Guangzhou, 510641, P.R. China 2Institute of Mathematics Zhejiang Wanli University Ningbo, Zhejiang, 315100, P.R. China
Studia Mathematica, Tome 194 (2009) no. 2, pp. 197-205
This paper studies the geometric structure of graph-directed
sets from the point of view of Lipschitz equivalence. It is
proved that if $\{E_{i}\}_{i}$ and $\{F_{j}\}_{j}$ are
dust-like graph-directed sets satisfying the transitivity
condition, then $E_{i_{1}}$ and $E_{i_{2}}$ are Lipschitz
equivalent, and $E_{i}$ and $F_{j}$ are quasi-Lipschitz
equivalent when they have the same Hausdorff dimension.
Keywords:
paper studies geometric structure graph directed sets point view lipschitz equivalence proved dust like graph directed sets satisfying transitivity condition lipschitz equivalent quasi lipschitz equivalent have hausdorff dimension
Affiliations des auteurs :
Ying Xiong 
1
;
Lifeng Xi 
2
1
Department of Mathematics South China University of Technology Guangzhou, 510641, P.R. China
2
Institute of Mathematics Zhejiang Wanli University Ningbo, Zhejiang, 315100, P.R. China
@article{10_4064_sm194_2_6,
author = {Ying Xiong and Lifeng Xi},
title = {Lipschitz equivalence of graph-directed fractals},
journal = {Studia Mathematica},
pages = {197--205},
year = {2009},
volume = {194},
number = {2},
doi = {10.4064/sm194-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-6/}
}
TY - JOUR
AU - Ying Xiong
AU - Lifeng Xi
TI - Lipschitz equivalence of graph-directed fractals
JO - Studia Mathematica
PY - 2009
SP - 197
EP - 205
VL - 194
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-6/
DO - 10.4064/sm194-2-6
LA - en
ID - 10_4064_sm194_2_6
ER -
%0 Journal Article
%A Ying Xiong
%A Lifeng Xi
%T Lipschitz equivalence of graph-directed fractals
%J Studia Mathematica
%D 2009
%P 197-205
%V 194
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-6/
%R 10.4064/sm194-2-6
%G en
%F 10_4064_sm194_2_6
Ying Xiong; Lifeng Xi. Lipschitz equivalence of graph-directed fractals. Studia Mathematica, Tome 194 (2009) no. 2, pp. 197-205. doi: 10.4064/sm194-2-6