Multi-dimensional Fejér summability and local Hardy spaces
Studia Mathematica, Tome 194 (2009) no. 2, pp. 181-195
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is proved that the multi-dimensional maximal Fejér operator
defined in a cone is bounded
from the amalgam Hardy space $W(h_{p},\ell_\infty)$
to $W(L_{p},\ell_\infty)$. This implies the
almost everywhere convergence of the Fejér
means in a cone for all $f\in
W(L_{1},\ell_\infty)$, which is larger than $L_1(\mathbb R^d)$.
Keywords:
proved multi dimensional maximal fej operator defined cone bounded amalgam hardy space ell infty ell infty implies almost everywhere convergence fej means cone ell infty which larger mathbb
Affiliations des auteurs :
Ferenc Weisz  1
@article{10_4064_sm194_2_5,
author = {Ferenc Weisz},
title = {Multi-dimensional {Fej\'er} summability and local {Hardy} spaces},
journal = {Studia Mathematica},
pages = {181--195},
year = {2009},
volume = {194},
number = {2},
doi = {10.4064/sm194-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-5/}
}
Ferenc Weisz. Multi-dimensional Fejér summability and local Hardy spaces. Studia Mathematica, Tome 194 (2009) no. 2, pp. 181-195. doi: 10.4064/sm194-2-5
Cité par Sources :