Multi-dimensional Fejér summability and local Hardy spaces
Studia Mathematica, Tome 194 (2009) no. 2, pp. 181-195 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space $W(h_{p},\ell_\infty)$ to $W(L_{p},\ell_\infty)$. This implies the almost everywhere convergence of the Fejér means in a cone for all $f\in W(L_{1},\ell_\infty)$, which is larger than $L_1(\mathbb R^d)$.
DOI : 10.4064/sm194-2-5
Keywords: proved multi dimensional maximal fej operator defined cone bounded amalgam hardy space ell infty ell infty implies almost everywhere convergence fej means cone ell infty which larger mathbb

Ferenc Weisz  1

1 Department of Numerical Analysis Eötvös L. University Pázmány P. sétány 1//C H-1117 Budapest, Hungary
@article{10_4064_sm194_2_5,
     author = {Ferenc Weisz},
     title = {Multi-dimensional {Fej\'er} summability and local {Hardy} spaces},
     journal = {Studia Mathematica},
     pages = {181--195},
     year = {2009},
     volume = {194},
     number = {2},
     doi = {10.4064/sm194-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-5/}
}
TY  - JOUR
AU  - Ferenc Weisz
TI  - Multi-dimensional Fejér summability and local Hardy spaces
JO  - Studia Mathematica
PY  - 2009
SP  - 181
EP  - 195
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-5/
DO  - 10.4064/sm194-2-5
LA  - en
ID  - 10_4064_sm194_2_5
ER  - 
%0 Journal Article
%A Ferenc Weisz
%T Multi-dimensional Fejér summability and local Hardy spaces
%J Studia Mathematica
%D 2009
%P 181-195
%V 194
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-5/
%R 10.4064/sm194-2-5
%G en
%F 10_4064_sm194_2_5
Ferenc Weisz. Multi-dimensional Fejér summability and local Hardy spaces. Studia Mathematica, Tome 194 (2009) no. 2, pp. 181-195. doi: 10.4064/sm194-2-5

Cité par Sources :