Lindenstrauss–Pełczyński (for short
$\mathscr{LP}$) spaces were introduced by these authors [Studia Math. 174 (2006)] as
those Banach spaces $X$ such that every operator from a subspace
of $c_0$ into $X$ can be extended to the whole $c_0$. Here we
obtain the following structure theorem: a separable Banach space
$X$ is an $\mathscr{LP}$-space if and only if every subspace of
$c_0$ is placed in $X$ in a unique position, up to automorphisms
of $X$. This, in combination with a result of Kalton [New York J. Math. 13 (2007)],
provides a negative answer to a problem posed by Lindenstrauss and
Pełczyński [J. Funct. Anal. 8 (1971)]. We show that the class of
$\mathscr{LP}$-spaces does not have the 3-space property, which
corrects a theorem in an earlier paper of the authors [Studia Math. 174 (2006)].
We then solve a problem
in that paper showing that $\mathcal L_\infty$ spaces not
containing $l_1$ are not necessarily $\mathscr{LP}$-spaces.
Mots-clés :
lindenstrauss czy ski short mathscr spaces introduced these authors studia math those banach spaces every operator subspace extended whole here obtain following structure theorem separable banach space mathscr space only every subspace placed unique position automorphisms combination result kalton york math provides negative answer problem posed lindenstrauss czy ski funct anal class mathscr spaces does have space property which corrects theorem earlier paper authors studia math solve problem paper showing mathcal infty spaces containing necessarily mathscr spaces
Affiliations des auteurs :
Jesús M. F. Castillo 
1
;
Yolanda Moreno 
1
;
Jesús Suárez 
1
1
Departamento de Matemáticas Universidad de Extremadura Avenida de Elvas 06071 Badajoz, España
@article{10_4064_sm194_2_1,
author = {Jes\'us M. F. Castillo and Yolanda Moreno and Jes\'us Su\'arez},
title = {The structure of {Lindenstrauss{\textendash}Pe{\l}czy\'nski} spaces},
journal = {Studia Mathematica},
pages = {105--115},
year = {2009},
volume = {194},
number = {2},
doi = {10.4064/sm194-2-1},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-1/}
}
TY - JOUR
AU - Jesús M. F. Castillo
AU - Yolanda Moreno
AU - Jesús Suárez
TI - The structure of Lindenstrauss–Pełczyński spaces
JO - Studia Mathematica
PY - 2009
SP - 105
EP - 115
VL - 194
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-1/
DO - 10.4064/sm194-2-1
LA - pl
ID - 10_4064_sm194_2_1
ER -
%0 Journal Article
%A Jesús M. F. Castillo
%A Yolanda Moreno
%A Jesús Suárez
%T The structure of Lindenstrauss–Pełczyński spaces
%J Studia Mathematica
%D 2009
%P 105-115
%V 194
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm194-2-1/
%R 10.4064/sm194-2-1
%G pl
%F 10_4064_sm194_2_1
Jesús M. F. Castillo; Yolanda Moreno; Jesús Suárez. The structure of Lindenstrauss–Pełczyński spaces. Studia Mathematica, Tome 194 (2009) no. 2, pp. 105-115. doi: 10.4064/sm194-2-1