We study generalized derivations $G$ defined on a complex Banach algebra $A$ such that the spectrum $\sigma (Gx)$ is finite for all $x \in A$. In particular, we show that if $A$ is unital and semisimple, then $G$ is inner and implemented by elements of the socle of $A$.
@article{10_4064_sm194_1_5,
author = {Nadia Boudi and Said Ouchrif},
title = {On generalized derivations in {Banach} algebras},
journal = {Studia Mathematica},
pages = {81--89},
year = {2009},
volume = {194},
number = {1},
doi = {10.4064/sm194-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-1-5/}
}
TY - JOUR
AU - Nadia Boudi
AU - Said Ouchrif
TI - On generalized derivations in Banach algebras
JO - Studia Mathematica
PY - 2009
SP - 81
EP - 89
VL - 194
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm194-1-5/
DO - 10.4064/sm194-1-5
LA - en
ID - 10_4064_sm194_1_5
ER -
%0 Journal Article
%A Nadia Boudi
%A Said Ouchrif
%T On generalized derivations in Banach algebras
%J Studia Mathematica
%D 2009
%P 81-89
%V 194
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm194-1-5/
%R 10.4064/sm194-1-5
%G en
%F 10_4064_sm194_1_5
Nadia Boudi; Said Ouchrif. On generalized derivations in Banach algebras. Studia Mathematica, Tome 194 (2009) no. 1, pp. 81-89. doi: 10.4064/sm194-1-5