Transferring $L^p$ eigenfunction bounds from $S^{2n+1}$ to $h^n$
Studia Mathematica, Tome 194 (2009) no. 1, pp. 23-42 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

By using the notion of contraction of Lie groups, we transfer $L^p$-$L^2$ estimates for joint spectral projectors from the unit complex sphere $S^{2n+1}$ in ${\mathbb C}^{n+1}$ to the reduced Heisenberg group $h^{n}$. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on $h^n$. As a consequence, we prove, in the spirit of Sogge's work, a discrete restriction theorem for the sub-Laplacian $L$ on $h^n$.
DOI : 10.4064/sm194-1-2
Keywords: using notion contraction lie groups transfer p l estimates joint spectral projectors unit complex sphere mathbb reduced heisenberg group particular deduce estimates recently obtained koch ricci consequence prove spirit sogges work discrete restriction theorem sub laplacian

Valentina Casarino  1   ; Paolo Ciatti  2

1 Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino, Italy
2 Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Via Trieste 63 35121 Padova, Italy
@article{10_4064_sm194_1_2,
     author = {Valentina Casarino and Paolo Ciatti},
     title = {Transferring $L^p$ eigenfunction bounds
from $S^{2n+1}$ to $h^n$},
     journal = {Studia Mathematica},
     pages = {23--42},
     year = {2009},
     volume = {194},
     number = {1},
     doi = {10.4064/sm194-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm194-1-2/}
}
TY  - JOUR
AU  - Valentina Casarino
AU  - Paolo Ciatti
TI  - Transferring $L^p$ eigenfunction bounds
from $S^{2n+1}$ to $h^n$
JO  - Studia Mathematica
PY  - 2009
SP  - 23
EP  - 42
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm194-1-2/
DO  - 10.4064/sm194-1-2
LA  - en
ID  - 10_4064_sm194_1_2
ER  - 
%0 Journal Article
%A Valentina Casarino
%A Paolo Ciatti
%T Transferring $L^p$ eigenfunction bounds
from $S^{2n+1}$ to $h^n$
%J Studia Mathematica
%D 2009
%P 23-42
%V 194
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm194-1-2/
%R 10.4064/sm194-1-2
%G en
%F 10_4064_sm194_1_2
Valentina Casarino; Paolo Ciatti. Transferring $L^p$ eigenfunction bounds
from $S^{2n+1}$ to $h^n$. Studia Mathematica, Tome 194 (2009) no. 1, pp. 23-42. doi: 10.4064/sm194-1-2

Cité par Sources :