Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces
Studia Mathematica, Tome 193 (2009) no. 3, pp. 269-283

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $G$ is the closure of $L_\infty$ in $\exp L_{2}$, it is proved that the inclusion between rearrangement invariant spaces $E\subset F$ is strictly singular if and only if it is disjointly strictly singular and $E\not\supset G$. For any Marcinkiewicz space $M(\varphi) \subset G$ such that $M(\varphi) $ is not an interpolation space between $L_{\infty}$ and $G$ it is proved that there exists another Marcinkiewicz space $M(\psi)\subsetneq M(\varphi)$ with the property that the $M(\psi)$ and $ M(\varphi)$ norms are equivalent on the Rademacher subspace. Applications are given and a question of Milman answered.
DOI : 10.4064/sm193-3-4
Keywords: closure infty exp proved inclusion between rearrangement invariant spaces subset strictly singular only disjointly strictly singular supset marcinkiewicz space varphi subset varphi interpolation space between infty proved there exists another marcinkiewicz space psi subsetneq varphi property psi varphi norms equivalent rademacher subspace applications given question milman answered

Sergei V. Astashkin 1 ; Francisco L. Hernández 2 ; Evgeni M. Semenov 3

1 Department of Mathematics Samara State University Samara 443029, Russia
2 Department of Mathematical Analysis Madrid Complutense University 28040 Madrid, Spain
3 Department of Mathematics Voronezh State University Voronezh 394006, Russia
@article{10_4064_sm193_3_4,
     author = {Sergei V. Astashkin and Francisco L. Hern\'andez and Evgeni M. Semenov},
     title = {Strictly singular inclusions of rearrangement invariant
spaces and {Rademacher} spaces},
     journal = {Studia Mathematica},
     pages = {269--283},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2009},
     doi = {10.4064/sm193-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-4/}
}
TY  - JOUR
AU  - Sergei V. Astashkin
AU  - Francisco L. Hernández
AU  - Evgeni M. Semenov
TI  - Strictly singular inclusions of rearrangement invariant
spaces and Rademacher spaces
JO  - Studia Mathematica
PY  - 2009
SP  - 269
EP  - 283
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-4/
DO  - 10.4064/sm193-3-4
LA  - en
ID  - 10_4064_sm193_3_4
ER  - 
%0 Journal Article
%A Sergei V. Astashkin
%A Francisco L. Hernández
%A Evgeni M. Semenov
%T Strictly singular inclusions of rearrangement invariant
spaces and Rademacher spaces
%J Studia Mathematica
%D 2009
%P 269-283
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-4/
%R 10.4064/sm193-3-4
%G en
%F 10_4064_sm193_3_4
Sergei V. Astashkin; Francisco L. Hernández; Evgeni M. Semenov. Strictly singular inclusions of rearrangement invariant
spaces and Rademacher spaces. Studia Mathematica, Tome 193 (2009) no. 3, pp. 269-283. doi: 10.4064/sm193-3-4

Cité par Sources :