Quasiaffine transforms of operators
Studia Mathematica, Tome 193 (2009) no. 3, pp. 263-267
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We obtain a new sufficient condition (which may be useful elsewhere) that a compact perturbation of a normal operator be the quasiaffine transform of some normal operator. We also give some applications of this result.
DOI : 10.4064/sm193-3-3
Keywords: obtain sufficient condition which may useful elsewhere compact perturbation normal operator quasiaffine transform normal operator applications result

Il Bong Jung  1   ; Eungil Ko  2   ; Carl Pearcy  3

1 Department of Mathematics Kyungpook National University Daegu 702-701, Korea
2 Department of Mathematics Ewha Women's University Seoul 120-750, Korea
3 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_sm193_3_3,
     author = {Il Bong Jung and Eungil Ko and Carl Pearcy},
     title = {Quasiaffine transforms of operators},
     journal = {Studia Mathematica},
     pages = {263--267},
     year = {2009},
     volume = {193},
     number = {3},
     doi = {10.4064/sm193-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-3/}
}
TY  - JOUR
AU  - Il Bong Jung
AU  - Eungil Ko
AU  - Carl Pearcy
TI  - Quasiaffine transforms of operators
JO  - Studia Mathematica
PY  - 2009
SP  - 263
EP  - 267
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-3/
DO  - 10.4064/sm193-3-3
LA  - en
ID  - 10_4064_sm193_3_3
ER  - 
%0 Journal Article
%A Il Bong Jung
%A Eungil Ko
%A Carl Pearcy
%T Quasiaffine transforms of operators
%J Studia Mathematica
%D 2009
%P 263-267
%V 193
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-3/
%R 10.4064/sm193-3-3
%G en
%F 10_4064_sm193_3_3
Il Bong Jung; Eungil Ko; Carl Pearcy. Quasiaffine transforms of operators. Studia Mathematica, Tome 193 (2009) no. 3, pp. 263-267. doi: 10.4064/sm193-3-3

Cité par Sources :