On the parabolic-elliptic limit of the doubly parabolic Keller–Segel system modelling chemotaxis
Studia Mathematica, Tome 193 (2009) no. 3, pp. 241-261

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller–Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.
DOI : 10.4064/sm193-3-2
Keywords: establish results convergence strong topologies solutions parabolic parabolic keller segel system plane corresponding solutions parabolic elliptic model physical parameter goes zero main tools suitable space time estimates implying global existence slowly decaying general nonintegrable solutions these models under natural smallness assumption

Piotr Biler 1 ; Lorenzo Brandolese 2

1 Instytut Matematyczny Uniwersytet Wroc/lawski pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
2 Université de Lyon Université Lyon 1 Institut Camille Jordan, CNRS UMR 5208 43 bd. du 11 Novembre 69622 Villeurbanne Cedex, France
@article{10_4064_sm193_3_2,
     author = {Piotr Biler and Lorenzo Brandolese},
     title = {On the parabolic-elliptic limit of the doubly parabolic
 {Keller{\textendash}Segel} system modelling chemotaxis},
     journal = {Studia Mathematica},
     pages = {241--261},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2009},
     doi = {10.4064/sm193-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-2/}
}
TY  - JOUR
AU  - Piotr Biler
AU  - Lorenzo Brandolese
TI  - On the parabolic-elliptic limit of the doubly parabolic
 Keller–Segel system modelling chemotaxis
JO  - Studia Mathematica
PY  - 2009
SP  - 241
EP  - 261
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-2/
DO  - 10.4064/sm193-3-2
LA  - en
ID  - 10_4064_sm193_3_2
ER  - 
%0 Journal Article
%A Piotr Biler
%A Lorenzo Brandolese
%T On the parabolic-elliptic limit of the doubly parabolic
 Keller–Segel system modelling chemotaxis
%J Studia Mathematica
%D 2009
%P 241-261
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-3-2/
%R 10.4064/sm193-3-2
%G en
%F 10_4064_sm193_3_2
Piotr Biler; Lorenzo Brandolese. On the parabolic-elliptic limit of the doubly parabolic
 Keller–Segel system modelling chemotaxis. Studia Mathematica, Tome 193 (2009) no. 3, pp. 241-261. doi: 10.4064/sm193-3-2

Cité par Sources :