1Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain 2Faculty of Mathematics and Physics University of Ljubljana 1000 Ljubljana, Slovenia and Faculty of Natural Sciences and Mathematics University of Maribor 2000 Maribor, Slovenia
Studia Mathematica, Tome 193 (2009) no. 2, pp. 131-159
A linear map $T$ from a Banach algebra $A$ into another $B$
preserves zero products if $T(a)T(b)=0$ whenever $a,b\in A$ are
such that $ab=0$. This paper is mainly concerned with the question
of whether every continuous linear surjective map $T\colon
A\rightarrow B$ that preserves zero products is a weighted
homomorphism. We show that this is indeed the case for a large
class of Banach algebras which includes group algebras.Our method involves continuous bilinear maps $\phi\colon A\times
A\rightarrow X$ (for some Banach space $X$) with the property that
$\phi(a,b)=0$ whenever $a,b\in A$ are such that $ab=0$. We prove
that such a map necessarily satisfies $\phi(a\mu,b)=\phi(a,\mu b)$
for all $a,b\in A$ and for all $\mu$ from the closure with respect
to the strong operator topology of the subalgebra of
$\mathcal{M}(A)$ (the multiplier algebra of $A$) generated by
doubly power-bounded elements of $\mathcal{M}(A)$. This method is
also shown to be useful for characterizing derivations through the
zero products.
Keywords:
linear map banach algebra another preserves zero products b whenever paper mainly concerned question whether every continuous linear surjective map colon rightarrow preserves zero products weighted homomorphism indeed large class banach algebras which includes group algebras method involves continuous bilinear maps phi colon times rightarrow banach space property phi whenever prove map necessarily satisfies phi phi for closure respect strong operator topology subalgebra mathcal multiplier algebra generated doubly power bounded elements mathcal method shown useful characterizing derivations through zero products
Affiliations des auteurs :
J. Alaminos 
1
;
M. Brešar 
2
;
J. Extremera 
1
;
A. R. Villena 
1
1
Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain
2
Faculty of Mathematics and Physics University of Ljubljana 1000 Ljubljana, Slovenia and Faculty of Natural Sciences and Mathematics University of Maribor 2000 Maribor, Slovenia
@article{10_4064_sm193_2_3,
author = {J. Alaminos and M. Bre\v{s}ar and J. Extremera and A. R. Villena},
title = {Maps preserving zero products},
journal = {Studia Mathematica},
pages = {131--159},
year = {2009},
volume = {193},
number = {2},
doi = {10.4064/sm193-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-3/}
}
TY - JOUR
AU - J. Alaminos
AU - M. Brešar
AU - J. Extremera
AU - A. R. Villena
TI - Maps preserving zero products
JO - Studia Mathematica
PY - 2009
SP - 131
EP - 159
VL - 193
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-3/
DO - 10.4064/sm193-2-3
LA - en
ID - 10_4064_sm193_2_3
ER -
%0 Journal Article
%A J. Alaminos
%A M. Brešar
%A J. Extremera
%A A. R. Villena
%T Maps preserving zero products
%J Studia Mathematica
%D 2009
%P 131-159
%V 193
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-3/
%R 10.4064/sm193-2-3
%G en
%F 10_4064_sm193_2_3
J. Alaminos; M. Brešar; J. Extremera; A. R. Villena. Maps preserving zero products. Studia Mathematica, Tome 193 (2009) no. 2, pp. 131-159. doi: 10.4064/sm193-2-3