General Dirichlet series, arithmetic
convolution equations and Laplace transforms
Studia Mathematica, Tome 193 (2009) no. 2, pp. 109-129
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions
$g\colon\mathbb N\to\mathbb C$ to convolution equations of the form
\[
a_d*g^{*d}+a_{d-1}*g^{*(d-1)}+\cdots+a_1*g+a_0=0,
\]
where $a_0,\ldots,a_d\colon\mathbb N\to\mathbb C$ are given arithmetic functions
associated with Dirichlet series which converge on some right half plane, and
also $g$ is required to be such a function. In this article, we extend
our previous results to multidimensional general Dirichlet series of the
form $\sum_{x\in X}f(x)e^{-sx}$ ($s\in \mathbb C^k$), where
$X\subseteq [0,\infty)^k$ is an additive subsemigroup. If $X$ is discrete and
a certain solvability criterion is satisfied, we determine solutions by an
elementary recursive approach, adapting an idea of Fečkan [Proc. Amer. Math. Soc. 136 (2008)].
The solution of the general case leads us to a more comprehensive question:
Let $X$ be an additive subsemigroup of a pointed, closed convex cone
$C\subseteq \mathbb R^k$. Can we find a complex Radon measure on $X$ whose
Laplace transform satisfies a given polynomial equation whose coefficients
are Laplace transforms of such measures?
Keywords:
earlier paper proc amer math soc studied solutions colon mathbb mathbb convolution equations form d*g *d d *g * d cdots *g where ldots colon mathbb mathbb given arithmetic functions associated dirichlet series which converge right half plane required function article extend previous results multidimensional general dirichlet series form sum e sx mathbb where subseteq infty additive subsemigroup discrete certain solvability criterion satisfied determine solutions elementary recursive approach adapting idea kan proc amer math soc solution general leads comprehensive question additive subsemigroup pointed closed convex cone subseteq mathbb complex radon measure whose laplace transform satisfies given polynomial equation whose coefficients laplace transforms measures
Affiliations des auteurs :
Helge Glöckner 1 ; Lutz G. Lucht 2 ; Štefan Porubský 3
@article{10_4064_sm193_2_2,
author = {Helge Gl\"ockner and Lutz G. Lucht and \v{S}tefan Porubsk\'y},
title = {General {Dirichlet} series, arithmetic
convolution equations and {Laplace} transforms},
journal = {Studia Mathematica},
pages = {109--129},
publisher = {mathdoc},
volume = {193},
number = {2},
year = {2009},
doi = {10.4064/sm193-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-2/}
}
TY - JOUR AU - Helge Glöckner AU - Lutz G. Lucht AU - Štefan Porubský TI - General Dirichlet series, arithmetic convolution equations and Laplace transforms JO - Studia Mathematica PY - 2009 SP - 109 EP - 129 VL - 193 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-2/ DO - 10.4064/sm193-2-2 LA - en ID - 10_4064_sm193_2_2 ER -
%0 Journal Article %A Helge Glöckner %A Lutz G. Lucht %A Štefan Porubský %T General Dirichlet series, arithmetic convolution equations and Laplace transforms %J Studia Mathematica %D 2009 %P 109-129 %V 193 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-2/ %R 10.4064/sm193-2-2 %G en %F 10_4064_sm193_2_2
Helge Glöckner; Lutz G. Lucht; Štefan Porubský. General Dirichlet series, arithmetic convolution equations and Laplace transforms. Studia Mathematica, Tome 193 (2009) no. 2, pp. 109-129. doi: 10.4064/sm193-2-2
Cité par Sources :