General Dirichlet series, arithmetic convolution equations and Laplace transforms
Studia Mathematica, Tome 193 (2009) no. 2, pp. 109-129

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions $g\colon\mathbb N\to\mathbb C$ to convolution equations of the form \[ a_d*g^{*d}+a_{d-1}*g^{*(d-1)}+\cdots+a_1*g+a_0=0, \] where $a_0,\ldots,a_d\colon\mathbb N\to\mathbb C$ are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also $g$ is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form $\sum_{x\in X}f(x)e^{-sx}$ ($s\in \mathbb C^k$), where $X\subseteq [0,\infty)^k$ is an additive subsemigroup. If $X$ is discrete and a certain solvability criterion is satisfied, we determine solutions by an elementary recursive approach, adapting an idea of Fečkan [Proc. Amer. Math. Soc. 136 (2008)]. The solution of the general case leads us to a more comprehensive question: Let $X$ be an additive subsemigroup of a pointed, closed convex cone $C\subseteq \mathbb R^k$. Can we find a complex Radon measure on $X$ whose Laplace transform satisfies a given polynomial equation whose coefficients are Laplace transforms of such measures?
DOI : 10.4064/sm193-2-2
Keywords: earlier paper proc amer math soc studied solutions colon mathbb mathbb convolution equations form d*g *d d *g * d cdots *g where ldots colon mathbb mathbb given arithmetic functions associated dirichlet series which converge right half plane required function article extend previous results multidimensional general dirichlet series form sum e sx mathbb where subseteq infty additive subsemigroup discrete certain solvability criterion satisfied determine solutions elementary recursive approach adapting idea kan proc amer math soc solution general leads comprehensive question additive subsemigroup pointed closed convex cone subseteq mathbb complex radon measure whose laplace transform satisfies given polynomial equation whose coefficients laplace transforms measures

Helge Glöckner 1 ; Lutz G. Lucht 2 ; Štefan Porubský 3

1 Institut für Mathematik Universität Paderborn Warburger Str. 100 33098 Paderborn, Germany
2 Siemensstr. 1 38640 Goslar, Germany
3 Institute of Computer Science Academy of Sciences of the Czech Republic Pod Vodárenskou věží 2 182 07 Praha 8, Czech Republi
@article{10_4064_sm193_2_2,
     author = {Helge Gl\"ockner and Lutz G. Lucht and \v{S}tefan Porubsk\'y},
     title = {General {Dirichlet} series, arithmetic
convolution equations and {Laplace} transforms},
     journal = {Studia Mathematica},
     pages = {109--129},
     publisher = {mathdoc},
     volume = {193},
     number = {2},
     year = {2009},
     doi = {10.4064/sm193-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-2/}
}
TY  - JOUR
AU  - Helge Glöckner
AU  - Lutz G. Lucht
AU  - Štefan Porubský
TI  - General Dirichlet series, arithmetic
convolution equations and Laplace transforms
JO  - Studia Mathematica
PY  - 2009
SP  - 109
EP  - 129
VL  - 193
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-2/
DO  - 10.4064/sm193-2-2
LA  - en
ID  - 10_4064_sm193_2_2
ER  - 
%0 Journal Article
%A Helge Glöckner
%A Lutz G. Lucht
%A Štefan Porubský
%T General Dirichlet series, arithmetic
convolution equations and Laplace transforms
%J Studia Mathematica
%D 2009
%P 109-129
%V 193
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-2/
%R 10.4064/sm193-2-2
%G en
%F 10_4064_sm193_2_2
Helge Glöckner; Lutz G. Lucht; Štefan Porubský. General Dirichlet series, arithmetic
convolution equations and Laplace transforms. Studia Mathematica, Tome 193 (2009) no. 2, pp. 109-129. doi: 10.4064/sm193-2-2

Cité par Sources :