Embedding a topological group into its
WAP-compactification
Studia Mathematica, Tome 193 (2009) no. 2, pp. 99-108
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the topology of the additive group of the Banach space $c_0$ is not induced by weakly almost periodic functions or, what is the same, that this group cannot be represented as a group of isometries of a reflexive Banach space. We show, in contrast, that additive groups of Schwartz locally convex spaces are always representable as groups of isometries on some reflexive Banach space.
Keywords:
prove topology additive group banach space induced weakly almost periodic functions what group cannot represented group isometries reflexive banach space contrast additive groups schwartz locally convex spaces always representable groups isometries reflexive banach space
Affiliations des auteurs :
Stefano Ferri 1 ; Jorge Galindo 2
@article{10_4064_sm193_2_1,
author = {Stefano Ferri and Jorge Galindo},
title = {Embedding a topological group into its
{WAP-compactification}},
journal = {Studia Mathematica},
pages = {99--108},
publisher = {mathdoc},
volume = {193},
number = {2},
year = {2009},
doi = {10.4064/sm193-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-1/}
}
TY - JOUR AU - Stefano Ferri AU - Jorge Galindo TI - Embedding a topological group into its WAP-compactification JO - Studia Mathematica PY - 2009 SP - 99 EP - 108 VL - 193 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm193-2-1/ DO - 10.4064/sm193-2-1 LA - en ID - 10_4064_sm193_2_1 ER -
Stefano Ferri; Jorge Galindo. Embedding a topological group into its WAP-compactification. Studia Mathematica, Tome 193 (2009) no. 2, pp. 99-108. doi: 10.4064/sm193-2-1
Cité par Sources :