On character amenable Banach algebras
Studia Mathematica, Tome 193 (2009) no. 1, pp. 53-78 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We obtain characterizations of left character amenable Banach algebras in terms of the existence of left $\phi$-approximate diagonals and left $\phi$-virtual diagonals. We introduce the left character amenability constant and find this constant for some Banach algebras. For all locally compact groups $G$, we show that the Fourier–Stieltjes algebra $B(G)$ is $C$-character amenable with $C2$ if and only if $G$ is compact. We prove that if $A$ is a character amenable, reflexive, commutative Banach algebra, then $A\cong \mathbb C^n$ for some $n\in \mathbb N$. We show that the left character amenability of the double dual of a Banach algebra $A$ implies the left character amenability of $A$, but the converse statement is not true in general. In fact, we give characterizations of character amenability of $L^1(G)^{**}$ and $A(G)^{**}$. We show that a natural uniform algebra on a compact space $X$ is character amenable if and only if $X$ is the Choquet boundary of the algebra. We also introduce and study character contractibility of Banach algebras.
DOI : 10.4064/sm193-1-3
Keywords: obtain characterizations character amenable banach algebras terms existence phi approximate diagonals phi virtual diagonals introduce character amenability constant constant banach algebras locally compact groups fourier stieltjes algebra c character amenable only compact prove character amenable reflexive commutative banach algebra cong mathbb mathbb character amenability double dual banach algebra implies character amenability converse statement general characterizations character amenability ** ** natural uniform algebra compact space character amenable only choquet boundary algebra introduce study character contractibility banach algebras

Z. Hu  1   ; M. Sangani Monfared  1   ; T. Traynor  1

1 Department of Mathematics and Statistics University of Windsor Windsor, ON, Canada N9B 3P4
@article{10_4064_sm193_1_3,
     author = {Z. Hu and M. Sangani Monfared and T. Traynor},
     title = {On character amenable {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {53--78},
     year = {2009},
     volume = {193},
     number = {1},
     doi = {10.4064/sm193-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-1-3/}
}
TY  - JOUR
AU  - Z. Hu
AU  - M. Sangani Monfared
AU  - T. Traynor
TI  - On character amenable Banach algebras
JO  - Studia Mathematica
PY  - 2009
SP  - 53
EP  - 78
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm193-1-3/
DO  - 10.4064/sm193-1-3
LA  - en
ID  - 10_4064_sm193_1_3
ER  - 
%0 Journal Article
%A Z. Hu
%A M. Sangani Monfared
%A T. Traynor
%T On character amenable Banach algebras
%J Studia Mathematica
%D 2009
%P 53-78
%V 193
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-1-3/
%R 10.4064/sm193-1-3
%G en
%F 10_4064_sm193_1_3
Z. Hu; M. Sangani Monfared; T. Traynor. On character amenable Banach algebras. Studia Mathematica, Tome 193 (2009) no. 1, pp. 53-78. doi: 10.4064/sm193-1-3

Cité par Sources :