We obtain characterizations of left character amenable Banach algebras
in terms of the existence of left $\phi$-approximate diagonals and
left $\phi$-virtual diagonals.
We introduce the left character amenability constant and find this
constant for some Banach algebras.
For all locally compact groups $G$, we show that the Fourier–Stieltjes
algebra $B(G)$ is $C$-character amenable with $C2$ if and only if $G$
is compact. We prove that if $A$ is a character amenable, reflexive,
commutative Banach algebra, then $A\cong \mathbb C^n$ for some $n\in \mathbb N$.
We show that the left character amenability of the double dual
of a Banach algebra $A$ implies the left character amenability
of $A$, but the converse statement
is not true in general. In fact, we give characterizations of
character amenability of $L^1(G)^{**}$
and $A(G)^{**}$. We show that a natural uniform algebra on a compact
space $X$ is character amenable if and only if $X$ is the Choquet
boundary of the algebra. We also introduce
and study character contractibility of Banach algebras.
Keywords:
obtain characterizations character amenable banach algebras terms existence phi approximate diagonals phi virtual diagonals introduce character amenability constant constant banach algebras locally compact groups fourier stieltjes algebra c character amenable only compact prove character amenable reflexive commutative banach algebra cong mathbb mathbb character amenability double dual banach algebra implies character amenability converse statement general characterizations character amenability ** ** natural uniform algebra compact space character amenable only choquet boundary algebra introduce study character contractibility banach algebras
Affiliations des auteurs :
Z. Hu 
1
;
M. Sangani Monfared 
1
;
T. Traynor 
1
1
Department of Mathematics and Statistics University of Windsor Windsor, ON, Canada N9B 3P4
@article{10_4064_sm193_1_3,
author = {Z. Hu and M. Sangani Monfared and T. Traynor},
title = {On character amenable {Banach} algebras},
journal = {Studia Mathematica},
pages = {53--78},
year = {2009},
volume = {193},
number = {1},
doi = {10.4064/sm193-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm193-1-3/}
}
TY - JOUR
AU - Z. Hu
AU - M. Sangani Monfared
AU - T. Traynor
TI - On character amenable Banach algebras
JO - Studia Mathematica
PY - 2009
SP - 53
EP - 78
VL - 193
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm193-1-3/
DO - 10.4064/sm193-1-3
LA - en
ID - 10_4064_sm193_1_3
ER -
%0 Journal Article
%A Z. Hu
%A M. Sangani Monfared
%A T. Traynor
%T On character amenable Banach algebras
%J Studia Mathematica
%D 2009
%P 53-78
%V 193
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm193-1-3/
%R 10.4064/sm193-1-3
%G en
%F 10_4064_sm193_1_3
Z. Hu; M. Sangani Monfared; T. Traynor. On character amenable Banach algebras. Studia Mathematica, Tome 193 (2009) no. 1, pp. 53-78. doi: 10.4064/sm193-1-3