What is a Sobolev space for the Laguerre function systems?
Studia Mathematica, Tome 192 (2009) no. 2, pp. 147-172
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We discuss the concept of Sobolev space associated to the Laguerre operator $ L_\alpha = - y\,\frac{d^2}{dy^2} - \frac{d}{dy} + \frac{y}{4} + \frac{\alpha^2}{4y},\ y\in (0,\infty).$ We show that the natural definition does not agree with the concept of potential space defined via the potentials $ (L_\alpha)^{-s}.$ An appropriate Laguerre–Sobolev space is defined in order to achieve that coincidence. An application is given to the almost everywhere convergence of solutions of the Schrödinger equation. Other Laguerre operators are also considered.
DOI : 10.4064/sm192-2-4
Keywords: discuss concept sobolev space associated laguerre operator alpha frac frac frac frac alpha infty natural definition does agree concept potential space defined via potentials alpha s appropriate laguerre sobolev space defined order achieve coincidence application given almost everywhere convergence solutions schr dinger equation other laguerre operators considered

B. Bongioanni  1   ; J. L. Torrea  2

1 Departamento de Matemática Facultad de Ingeniería Qímica Universidad Nacional del Litoral and Instituto de Matemática Aplicada del Litoral Santa Fe 3000, Argentina
2 Departamento de Matemáticas Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid, Spain
@article{10_4064_sm192_2_4,
     author = {B. Bongioanni and J. L. Torrea},
     title = {What is a {Sobolev} space for the {Laguerre} function systems?},
     journal = {Studia Mathematica},
     pages = {147--172},
     year = {2009},
     volume = {192},
     number = {2},
     doi = {10.4064/sm192-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-4/}
}
TY  - JOUR
AU  - B. Bongioanni
AU  - J. L. Torrea
TI  - What is a Sobolev space for the Laguerre function systems?
JO  - Studia Mathematica
PY  - 2009
SP  - 147
EP  - 172
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-4/
DO  - 10.4064/sm192-2-4
LA  - en
ID  - 10_4064_sm192_2_4
ER  - 
%0 Journal Article
%A B. Bongioanni
%A J. L. Torrea
%T What is a Sobolev space for the Laguerre function systems?
%J Studia Mathematica
%D 2009
%P 147-172
%V 192
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-4/
%R 10.4064/sm192-2-4
%G en
%F 10_4064_sm192_2_4
B. Bongioanni; J. L. Torrea. What is a Sobolev space for the Laguerre function systems?. Studia Mathematica, Tome 192 (2009) no. 2, pp. 147-172. doi: 10.4064/sm192-2-4

Cité par Sources :