Canonical Banach function spaces generated
by Urysohn universal spaces. Measures as Lipschitz maps
Studia Mathematica, Tome 192 (2009) no. 2, pp. 97-110
It is proved (independently of the
result of Holmes [Fund. Math. 140 (1992)]) that the dual space of
the uniform closure ${\rm CFL}(\mathbb U_r)$ of the linear span of the maps
$x \mapsto d(x,a) - d(x,b)$, where $d$ is the metric of the
Urysohn space ${\mathbb U}_r$ of diameter $r$, is (isometrically if $r =
+\infty$) isomorphic to the space ${\rm LIP}({\mathbb U}_r)$ of equivalence
classes of all real-valued Lipschitz maps on ${\mathbb U}_r$. The space
of all signed (real-valued) Borel measures on ${\mathbb U}_r$ is
isometrically embedded in the dual space of ${\rm CFL}({\mathbb U}_r)$ and it
is shown that the image of the embedding is a proper weak$^{*}$ dense
subspace of ${\rm CFL}({\mathbb U}_r)^*$. Some special properties of the space
${\rm CFL}({\mathbb U}_r)$ are established.
Keywords:
proved independently result holmes fund math dual space uniform closure cfl mathbb linear span maps mapsto where metric urysohn space mathbb diameter nbsp isometrically infty isomorphic space lip mathbb equivalence classes real valued lipschitz maps mathbb space signed real valued borel measures mathbb isometrically embedded dual space cfl mathbb shown image embedding proper weak * dense subspace cfl mathbb * special properties space cfl mathbb established
Affiliations des auteurs :
Piotr Niemiec  1
@article{10_4064_sm192_2_1,
author = {Piotr Niemiec},
title = {Canonical {Banach} function spaces generated
by {Urysohn} universal spaces. {Measures} as {Lipschitz} maps},
journal = {Studia Mathematica},
pages = {97--110},
year = {2009},
volume = {192},
number = {2},
doi = {10.4064/sm192-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-1/}
}
TY - JOUR AU - Piotr Niemiec TI - Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps JO - Studia Mathematica PY - 2009 SP - 97 EP - 110 VL - 192 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-1/ DO - 10.4064/sm192-2-1 LA - en ID - 10_4064_sm192_2_1 ER -
Piotr Niemiec. Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps. Studia Mathematica, Tome 192 (2009) no. 2, pp. 97-110. doi: 10.4064/sm192-2-1
Cité par Sources :