Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps
Studia Mathematica, Tome 192 (2009) no. 2, pp. 97-110
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure ${\rm CFL}(\mathbb U_r)$ of the linear span of the maps $x \mapsto d(x,a) - d(x,b)$, where $d$ is the metric of the Urysohn space ${\mathbb U}_r$ of diameter $r$, is (isometrically if $r = +\infty$) isomorphic to the space ${\rm LIP}({\mathbb U}_r)$ of equivalence classes of all real-valued Lipschitz maps on ${\mathbb U}_r$. The space of all signed (real-valued) Borel measures on ${\mathbb U}_r$ is isometrically embedded in the dual space of ${\rm CFL}({\mathbb U}_r)$ and it is shown that the image of the embedding is a proper weak$^{*}$ dense subspace of ${\rm CFL}({\mathbb U}_r)^*$. Some special properties of the space ${\rm CFL}({\mathbb U}_r)$ are established.
DOI : 10.4064/sm192-2-1
Keywords: proved independently result holmes fund math dual space uniform closure cfl mathbb linear span maps mapsto where metric urysohn space mathbb diameter nbsp isometrically infty isomorphic space lip mathbb equivalence classes real valued lipschitz maps mathbb space signed real valued borel measures mathbb isometrically embedded dual space cfl mathbb shown image embedding proper weak * dense subspace cfl mathbb * special properties space cfl mathbb established

Piotr Niemiec  1

1 Institute of Mathematics Jagiellonian University /Lojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_sm192_2_1,
     author = {Piotr Niemiec},
     title = {Canonical {Banach} function spaces generated
 by {Urysohn} universal spaces. {Measures} as {Lipschitz} maps},
     journal = {Studia Mathematica},
     pages = {97--110},
     year = {2009},
     volume = {192},
     number = {2},
     doi = {10.4064/sm192-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-1/}
}
TY  - JOUR
AU  - Piotr Niemiec
TI  - Canonical Banach function spaces generated
 by Urysohn universal spaces. Measures as Lipschitz maps
JO  - Studia Mathematica
PY  - 2009
SP  - 97
EP  - 110
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-1/
DO  - 10.4064/sm192-2-1
LA  - en
ID  - 10_4064_sm192_2_1
ER  - 
%0 Journal Article
%A Piotr Niemiec
%T Canonical Banach function spaces generated
 by Urysohn universal spaces. Measures as Lipschitz maps
%J Studia Mathematica
%D 2009
%P 97-110
%V 192
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm192-2-1/
%R 10.4064/sm192-2-1
%G en
%F 10_4064_sm192_2_1
Piotr Niemiec. Canonical Banach function spaces generated
 by Urysohn universal spaces. Measures as Lipschitz maps. Studia Mathematica, Tome 192 (2009) no. 2, pp. 97-110. doi: 10.4064/sm192-2-1

Cité par Sources :