Weighted variable $L^p$ integral inequalities for
the maximal operator on non-increasing functions
Studia Mathematica, Tome 192 (2009) no. 1, pp. 51-60
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $B_p$ be the Ariõ–Muckenhoupt weight class which controls the weighted $L^p$-norm inequalities for the Hardy operator on non-increasing functions. We replace the constant $p$ by a function $p(x)$ and examine the associated $L^{p(x)}$-norm inequalities of the Hardy operator.
Keywords:
ari muckenhoupt weight class which controls weighted p norm inequalities hardy operator non increasing functions replace constant function examine associated norm inequalities hardy operator
Affiliations des auteurs :
C. J. Neugebauer  1
@article{10_4064_sm192_1_5,
author = {C. J. Neugebauer},
title = {Weighted variable $L^p$ integral inequalities for
the maximal operator on non-increasing functions},
journal = {Studia Mathematica},
pages = {51--60},
year = {2009},
volume = {192},
number = {1},
doi = {10.4064/sm192-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm192-1-5/}
}
TY - JOUR AU - C. J. Neugebauer TI - Weighted variable $L^p$ integral inequalities for the maximal operator on non-increasing functions JO - Studia Mathematica PY - 2009 SP - 51 EP - 60 VL - 192 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm192-1-5/ DO - 10.4064/sm192-1-5 LA - en ID - 10_4064_sm192_1_5 ER -
C. J. Neugebauer. Weighted variable $L^p$ integral inequalities for the maximal operator on non-increasing functions. Studia Mathematica, Tome 192 (2009) no. 1, pp. 51-60. doi: 10.4064/sm192-1-5
Cité par Sources :