Weighted variable $L^p$ integral inequalities for the maximal operator on non-increasing functions
Studia Mathematica, Tome 192 (2009) no. 1, pp. 51-60 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $B_p$ be the Ariõ–Muckenhoupt weight class which controls the weighted $L^p$-norm inequalities for the Hardy operator on non-increasing functions. We replace the constant $p$ by a function $p(x)$ and examine the associated $L^{p(x)}$-norm inequalities of the Hardy operator.
DOI : 10.4064/sm192-1-5
Keywords: ari muckenhoupt weight class which controls weighted p norm inequalities hardy operator non increasing functions replace constant function examine associated norm inequalities hardy operator

C. J. Neugebauer  1

1 Department of Mathematics Purdue University West Lafayette, IN 47907-1395, U.S.A.
@article{10_4064_sm192_1_5,
     author = {C. J. Neugebauer},
     title = {Weighted variable $L^p$ integral inequalities for
 the maximal operator on non-increasing functions},
     journal = {Studia Mathematica},
     pages = {51--60},
     year = {2009},
     volume = {192},
     number = {1},
     doi = {10.4064/sm192-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm192-1-5/}
}
TY  - JOUR
AU  - C. J. Neugebauer
TI  - Weighted variable $L^p$ integral inequalities for
 the maximal operator on non-increasing functions
JO  - Studia Mathematica
PY  - 2009
SP  - 51
EP  - 60
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm192-1-5/
DO  - 10.4064/sm192-1-5
LA  - en
ID  - 10_4064_sm192_1_5
ER  - 
%0 Journal Article
%A C. J. Neugebauer
%T Weighted variable $L^p$ integral inequalities for
 the maximal operator on non-increasing functions
%J Studia Mathematica
%D 2009
%P 51-60
%V 192
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm192-1-5/
%R 10.4064/sm192-1-5
%G en
%F 10_4064_sm192_1_5
C. J. Neugebauer. Weighted variable $L^p$ integral inequalities for
 the maximal operator on non-increasing functions. Studia Mathematica, Tome 192 (2009) no. 1, pp. 51-60. doi: 10.4064/sm192-1-5

Cité par Sources :