On Gaussian Brunn–Minkowski inequalities
Studia Mathematica, Tome 191 (2009) no. 3, pp. 283-304 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We are interested in Gaussian versions of the classical Brunn–Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality for $m$ Borel or convex sets based on a previous work by Borell. Our method also yields semigroup proofs of the geometric Brascamp–Lieb inequality and of its reverse form, which follow exactly the same lines.
DOI : 10.4064/sm191-3-9
Keywords: interested gaussian versions classical brunn minkowski inequality prove streamlined semigroup version ehrhard inequality borel convex sets based previous work borell method yields semigroup proofs geometric brascamp lieb inequality its reverse form which follow exactly lines

Franck Barthe  1   ; Nolwen Huet  1

1 Institut de Mathématiques de Toulouse Université Paul Sabatier 31062 Toulouse, France
@article{10_4064_sm191_3_9,
     author = {Franck Barthe and Nolwen Huet},
     title = {On {Gaussian} {Brunn{\textendash}Minkowski} inequalities},
     journal = {Studia Mathematica},
     pages = {283--304},
     year = {2009},
     volume = {191},
     number = {3},
     doi = {10.4064/sm191-3-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-9/}
}
TY  - JOUR
AU  - Franck Barthe
AU  - Nolwen Huet
TI  - On Gaussian Brunn–Minkowski inequalities
JO  - Studia Mathematica
PY  - 2009
SP  - 283
EP  - 304
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-9/
DO  - 10.4064/sm191-3-9
LA  - en
ID  - 10_4064_sm191_3_9
ER  - 
%0 Journal Article
%A Franck Barthe
%A Nolwen Huet
%T On Gaussian Brunn–Minkowski inequalities
%J Studia Mathematica
%D 2009
%P 283-304
%V 191
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-9/
%R 10.4064/sm191-3-9
%G en
%F 10_4064_sm191_3_9
Franck Barthe; Nolwen Huet. On Gaussian Brunn–Minkowski inequalities. Studia Mathematica, Tome 191 (2009) no. 3, pp. 283-304. doi: 10.4064/sm191-3-9

Cité par Sources :