We prove that a semisimple, commutative Banach algebra has either exactly one uniform norm or infinitely many uniform norms; this answers a question asked by S. J. Bhatt and H. V. Dedania [Studia Math. 160 (2004)]. A similar result is proved for $C^\ast $-norms on $\ast $-semisimple, commutative Banach $\ast $-algebras. These properties are preserved if the identity is adjoined. We also show that a commutative Beurling $\ast $-algebra $L^1(G,\omega )$ has exactly one uniform norm if and only if it has exactly one $C^\ast $-norm; this is not true in arbitrary $\ast $-semisimple, commutative Banach $\ast $-algebras.
@article{10_4064_sm191_3_7,
author = {P. A. Dabhi and H. V. Dedania},
title = {On the uniqueness of uniform norms and $C^{\ast }$-norms},
journal = {Studia Mathematica},
pages = {263--270},
year = {2009},
volume = {191},
number = {3},
doi = {10.4064/sm191-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-7/}
}
TY - JOUR
AU - P. A. Dabhi
AU - H. V. Dedania
TI - On the uniqueness of uniform norms and $C^{\ast }$-norms
JO - Studia Mathematica
PY - 2009
SP - 263
EP - 270
VL - 191
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-7/
DO - 10.4064/sm191-3-7
LA - en
ID - 10_4064_sm191_3_7
ER -
%0 Journal Article
%A P. A. Dabhi
%A H. V. Dedania
%T On the uniqueness of uniform norms and $C^{\ast }$-norms
%J Studia Mathematica
%D 2009
%P 263-270
%V 191
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-7/
%R 10.4064/sm191-3-7
%G en
%F 10_4064_sm191_3_7
P. A. Dabhi; H. V. Dedania. On the uniqueness of uniform norms and $C^{\ast }$-norms. Studia Mathematica, Tome 191 (2009) no. 3, pp. 263-270. doi: 10.4064/sm191-3-7