1Department of Economics University of Babeş-Bolyai 400591 Cluj-Napoca, Romania 2Institute of Mathematics “Simion Stoilow" of the Romanian Academy 014700 Bucureşti, Romania and Department of Mathematics University of Craiova 200585 Craiova, Romania
Studia Mathematica, Tome 191 (2009) no. 3, pp. 237-246
Let $(M,g)$ be a compact
Riemannian manifold without boundary, with $\dim M\geq 3,$ and $f:\mathbb R
\to \mathbb R$ a
continuous function which is {sublinear} at
infinity. By various variational approaches, existence of multiple
solutions of the eigenvalue problem
$$-{\mit\Delta}_{g} \omega+\alpha (\sigma) \omega= \tilde
K(\lambda,\sigma)f(\omega),\ \quad \sigma\in M,\, \omega\in
H_1^2(M),$$ is established for certain eigenvalues $\lambda>0$,
depending on
further properties of $f$ and on explicit forms of the function
$\tilde K.$ Here, ${\mit\Delta}_{g}$ stands for the
Laplace–Beltrami operator on $(M,g),$ and $\alpha,$$\tilde K$
are smooth positive functions. These multiplicity results are then
applied to solve Emden–Fowler equations which involve sublinear
terms at infinity.
Keywords:
compact riemannian manifold without boundary dim geq mathbb mathbb continuous function which sublinear infinity various variational approaches existence multiple solutions eigenvalue problem mit delta omega alpha sigma omega tilde lambda sigma omega quad sigma omega established certain eigenvalues lambda depending further properties explicit forms function tilde here mit delta stands laplace beltrami operator alpha tilde smooth positive functions these multiplicity results applied solve emden fowler equations which involve sublinear terms infinity
Affiliations des auteurs :
Alexandru Kristály 
1
;
Vicenţiu Rădulescu 
2
1
Department of Economics University of Babeş-Bolyai 400591 Cluj-Napoca, Romania
2
Institute of Mathematics “Simion Stoilow" of the Romanian Academy 014700 Bucureşti, Romania and Department of Mathematics University of Craiova 200585 Craiova, Romania
@article{10_4064_sm191_3_5,
author = {Alexandru Krist\'aly and Vicen\c{t}iu R\u{a}dulescu},
title = {Sublinear eigenvalue problems on compact {Riemannian} manifolds
with applications in {Emden{\textendash}Fowler} equations},
journal = {Studia Mathematica},
pages = {237--246},
year = {2009},
volume = {191},
number = {3},
doi = {10.4064/sm191-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-5/}
}
TY - JOUR
AU - Alexandru Kristály
AU - Vicenţiu Rădulescu
TI - Sublinear eigenvalue problems on compact Riemannian manifolds
with applications in Emden–Fowler equations
JO - Studia Mathematica
PY - 2009
SP - 237
EP - 246
VL - 191
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-5/
DO - 10.4064/sm191-3-5
LA - en
ID - 10_4064_sm191_3_5
ER -
%0 Journal Article
%A Alexandru Kristály
%A Vicenţiu Rădulescu
%T Sublinear eigenvalue problems on compact Riemannian manifolds
with applications in Emden–Fowler equations
%J Studia Mathematica
%D 2009
%P 237-246
%V 191
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-5/
%R 10.4064/sm191-3-5
%G en
%F 10_4064_sm191_3_5
Alexandru Kristály; Vicenţiu Rădulescu. Sublinear eigenvalue problems on compact Riemannian manifolds
with applications in Emden–Fowler equations. Studia Mathematica, Tome 191 (2009) no. 3, pp. 237-246. doi: 10.4064/sm191-3-5