Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden–Fowler equations
Studia Mathematica, Tome 191 (2009) no. 3, pp. 237-246 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $(M,g)$ be a compact Riemannian manifold without boundary, with $\dim M\geq 3,$ and $f:\mathbb R \to \mathbb R$ a continuous function which is {sublinear} at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem $$-{\mit\Delta}_{g} \omega+\alpha (\sigma) \omega= \tilde K(\lambda,\sigma)f(\omega),\ \quad \sigma\in M,\, \omega\in H_1^2(M),$$ is established for certain eigenvalues $\lambda>0$, depending on further properties of $f$ and on explicit forms of the function $\tilde K.$ Here, ${\mit\Delta}_{g}$ stands for the Laplace–Beltrami operator on $(M,g),$ and $\alpha,$ $\tilde K$ are smooth positive functions. These multiplicity results are then applied to solve Emden–Fowler equations which involve sublinear terms at infinity.
DOI : 10.4064/sm191-3-5
Keywords: compact riemannian manifold without boundary dim geq mathbb mathbb continuous function which sublinear infinity various variational approaches existence multiple solutions eigenvalue problem mit delta omega alpha sigma omega tilde lambda sigma omega quad sigma omega established certain eigenvalues lambda depending further properties explicit forms function tilde here mit delta stands laplace beltrami operator alpha tilde smooth positive functions these multiplicity results applied solve emden fowler equations which involve sublinear terms infinity

Alexandru Kristály  1   ; Vicenţiu Rădulescu  2

1 Department of Economics University of Babeş-Bolyai 400591 Cluj-Napoca, Romania
2 Institute of Mathematics “Simion Stoilow" of the Romanian Academy 014700 Bucureşti, Romania and Department of Mathematics University of Craiova 200585 Craiova, Romania
@article{10_4064_sm191_3_5,
     author = {Alexandru Krist\'aly and Vicen\c{t}iu R\u{a}dulescu},
     title = {Sublinear eigenvalue problems on compact {Riemannian} manifolds
 with applications in {Emden{\textendash}Fowler} equations},
     journal = {Studia Mathematica},
     pages = {237--246},
     year = {2009},
     volume = {191},
     number = {3},
     doi = {10.4064/sm191-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-5/}
}
TY  - JOUR
AU  - Alexandru Kristály
AU  - Vicenţiu Rădulescu
TI  - Sublinear eigenvalue problems on compact Riemannian manifolds
 with applications in Emden–Fowler equations
JO  - Studia Mathematica
PY  - 2009
SP  - 237
EP  - 246
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-5/
DO  - 10.4064/sm191-3-5
LA  - en
ID  - 10_4064_sm191_3_5
ER  - 
%0 Journal Article
%A Alexandru Kristály
%A Vicenţiu Rădulescu
%T Sublinear eigenvalue problems on compact Riemannian manifolds
 with applications in Emden–Fowler equations
%J Studia Mathematica
%D 2009
%P 237-246
%V 191
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-5/
%R 10.4064/sm191-3-5
%G en
%F 10_4064_sm191_3_5
Alexandru Kristály; Vicenţiu Rădulescu. Sublinear eigenvalue problems on compact Riemannian manifolds
 with applications in Emden–Fowler equations. Studia Mathematica, Tome 191 (2009) no. 3, pp. 237-246. doi: 10.4064/sm191-3-5

Cité par Sources :