Simultaneous stabilization in $A_{\mathbb R}(\mathbb D)$
Studia Mathematica, Tome 191 (2009) no. 3, pp. 223-235
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We study the problem of simultaneous stabilization for the algebra $A_\mathbb R(\mathbb D)$. Invertible pairs $(f_j,g_j)$, $j=1,\ldots, n$, in a commutative unital algebra are called simultaneously stabilizable if there exists a pair $(\alpha,\beta)$ of elements such that $\alpha f_j+\beta g_j$ is invertible in this algebra for $j=1,\ldots, n$. For $n=2$, the simultaneous stabilization problem admits a positive solution for any data if and only if the Bass stable rank of the algebra is one. Since $A_\mathbb R(\mathbb D)$ has stable rank two, we are faced here with a different situation. When $n=2$, necessary and sufficient conditions are given so that we have simultaneous stability in $A_\mathbb R(\mathbb D)$.For $n\geq 3$ we show that under these conditions simultaneous stabilization is not possible and further connect this result to the question of which pairs $(f,g)$ in $A_\mathbb R(\mathbb D)^2$ are totally reducible, that is, for which pairs there exist two units $u$ and $v$ in $A_\mathbb R(\mathbb D)$ such that $uf+vg=1$.
DOI : 10.4064/sm191-3-4
Keywords: study problem simultaneous stabilization algebra mathbb mathbb invertible pairs j ldots commutative unital algebra called simultaneously stabilizable there exists pair alpha beta elements alpha beta invertible algebra ldots simultaneous stabilization problem admits positive solution only bass stable rank algebra since mathbb mathbb has stable rank faced here different situation necessary sufficient conditions given have simultaneous stability mathbb mathbb geq under these conditions simultaneous stabilization possible further connect result question which pairs mathbb mathbb totally reducible which pairs there exist units mathbb mathbb

Raymond Mortini  1   ; Brett D. Wick  2

1 Département de Mathématiques LMAM, UMR 7122 Université Paul Verlaine Ile du Saulcy, F-57045 Metz, France
2 Department of Mathematics University of South Carolina LeConte College 1523 Greene Street Columbia, SC 29208, U.S.A. and The Fields Institute 222 College Street, 2nd Floor Toronto, Ontario, M5T 3J1 Canada
@article{10_4064_sm191_3_4,
     author = {Raymond Mortini and Brett D. Wick},
     title = {Simultaneous stabilization in $A_{\mathbb R}(\mathbb D)$},
     journal = {Studia Mathematica},
     pages = {223--235},
     year = {2009},
     volume = {191},
     number = {3},
     doi = {10.4064/sm191-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-4/}
}
TY  - JOUR
AU  - Raymond Mortini
AU  - Brett D. Wick
TI  - Simultaneous stabilization in $A_{\mathbb R}(\mathbb D)$
JO  - Studia Mathematica
PY  - 2009
SP  - 223
EP  - 235
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-4/
DO  - 10.4064/sm191-3-4
LA  - en
ID  - 10_4064_sm191_3_4
ER  - 
%0 Journal Article
%A Raymond Mortini
%A Brett D. Wick
%T Simultaneous stabilization in $A_{\mathbb R}(\mathbb D)$
%J Studia Mathematica
%D 2009
%P 223-235
%V 191
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-4/
%R 10.4064/sm191-3-4
%G en
%F 10_4064_sm191_3_4
Raymond Mortini; Brett D. Wick. Simultaneous stabilization in $A_{\mathbb R}(\mathbb D)$. Studia Mathematica, Tome 191 (2009) no. 3, pp. 223-235. doi: 10.4064/sm191-3-4

Cité par Sources :