Almost everywhere convergence of Marcinkiewicz means of Fourier series on the group of 2-adic integers
Studia Mathematica, Tome 191 (2009) no. 3, pp. 215-222 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove the almost everywhere convergence of the Marcinkiewicz means of integrable functions $\sigma _{n}f \to f$ for every $f\in L^{1}(I^2)$, where $I$ is the group of $2$-adic integers.
DOI : 10.4064/sm191-3-3
Keywords: prove almost everywhere convergence marcinkiewicz means integrable functions sigma every where group adic integers

I. Blahota  1   ; G. Gát  1

1 Institute of Mathematics and Computer Science College of Nyíregyháza P.O. Box 166 H-4400 Nyíregyháza, Hungary
@article{10_4064_sm191_3_3,
     author = {I. Blahota and G. G\'at},
     title = {Almost everywhere convergence of
 {Marcinkiewicz} means of {Fourier} series on the
 group of 2-adic integers},
     journal = {Studia Mathematica},
     pages = {215--222},
     year = {2009},
     volume = {191},
     number = {3},
     doi = {10.4064/sm191-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-3/}
}
TY  - JOUR
AU  - I. Blahota
AU  - G. Gát
TI  - Almost everywhere convergence of
 Marcinkiewicz means of Fourier series on the
 group of 2-adic integers
JO  - Studia Mathematica
PY  - 2009
SP  - 215
EP  - 222
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-3/
DO  - 10.4064/sm191-3-3
LA  - en
ID  - 10_4064_sm191_3_3
ER  - 
%0 Journal Article
%A I. Blahota
%A G. Gát
%T Almost everywhere convergence of
 Marcinkiewicz means of Fourier series on the
 group of 2-adic integers
%J Studia Mathematica
%D 2009
%P 215-222
%V 191
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-3-3/
%R 10.4064/sm191-3-3
%G en
%F 10_4064_sm191_3_3
I. Blahota; G. Gát. Almost everywhere convergence of
 Marcinkiewicz means of Fourier series on the
 group of 2-adic integers. Studia Mathematica, Tome 191 (2009) no. 3, pp. 215-222. doi: 10.4064/sm191-3-3

Cité par Sources :