1Departamento de Análisis Matemático Facultad de Ciencias Matemáticas Universidad Complutense de Madrid 28040 Madrid, Spain 2Departamento de Matemática Universidad Torcuato Di Tella Miñones 2177 (C1428ATG) Buenos Aires, Argentina
Studia Mathematica, Tome 191 (2009) no. 2, pp. 181-200
This paper is devoted to several questions concerning linearizations of function spaces. We first consider the relation between linearizations of a given space when it is viewed as a function space over different domains. Then we study the problem of characterizing when a Banach function space admits a Banach linearization in a natural way. Finally, we consider the relevance of compactness properties in linearizations, more precisely, the relation between different compactness properties of a mapping, and compactness of its associated linear operator.
Keywords:
paper devoted several questions concerning linearizations function spaces first consider relation between linearizations given space viewed function space different domains study problem characterizing banach function space admits banach linearization natural finally consider relevance compactness properties linearizations precisely relation between different compactness properties mapping compactness its associated linear operator
1
Departamento de Análisis Matemático Facultad de Ciencias Matemáticas Universidad Complutense de Madrid 28040 Madrid, Spain
2
Departamento de Matemática Universidad Torcuato Di Tella Miñones 2177 (C1428ATG) Buenos Aires, Argentina
@article{10_4064_sm191_2_6,
author = {Jes\'us \'Angel Jaramillo and \'Angeles Prieto and Ignacio Zalduendo},
title = {Linearization and compactness},
journal = {Studia Mathematica},
pages = {181--200},
year = {2009},
volume = {191},
number = {2},
doi = {10.4064/sm191-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-6/}
}
TY - JOUR
AU - Jesús Ángel Jaramillo
AU - Ángeles Prieto
AU - Ignacio Zalduendo
TI - Linearization and compactness
JO - Studia Mathematica
PY - 2009
SP - 181
EP - 200
VL - 191
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-6/
DO - 10.4064/sm191-2-6
LA - en
ID - 10_4064_sm191_2_6
ER -