A lower bound on the radius of analyticity of a power series in a real Banach space
Studia Mathematica, Tome 191 (2009) no. 2, pp. 171-179
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $F$ be a power series centered at the origin in a real Banach
space with radius of uniform convergence $\varrho$. We show that $F$
is analytic in the open ball $B$ of radius $\varrho/\sqrt{e}$, and
furthermore, the Taylor series of $F$ about any point $a \in B$
converges uniformly within every closed ball centered at $a$
contained in $B$.
Keywords:
power series centered origin real banach space radius uniform convergence varrho analytic ball radius varrho sqrt furthermore taylor series about point converges uniformly within every closed ball centered contained nbsp
Affiliations des auteurs :
Timothy Nguyen  1
@article{10_4064_sm191_2_5,
author = {Timothy Nguyen},
title = {A lower bound on the radius of analyticity of a power series in a real {Banach} space},
journal = {Studia Mathematica},
pages = {171--179},
year = {2009},
volume = {191},
number = {2},
doi = {10.4064/sm191-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-5/}
}
TY - JOUR AU - Timothy Nguyen TI - A lower bound on the radius of analyticity of a power series in a real Banach space JO - Studia Mathematica PY - 2009 SP - 171 EP - 179 VL - 191 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-5/ DO - 10.4064/sm191-2-5 LA - en ID - 10_4064_sm191_2_5 ER -
Timothy Nguyen. A lower bound on the radius of analyticity of a power series in a real Banach space. Studia Mathematica, Tome 191 (2009) no. 2, pp. 171-179. doi: 10.4064/sm191-2-5
Cité par Sources :