Algebra isomorphisms between standard operator algebras
Studia Mathematica, Tome 191 (2009) no. 2, pp. 163-170 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

If $X$ and $Y$ are Banach spaces, then subalgebras ${\mathfrak A}\subset B(X)$ and ${\mathfrak B}\subset B(Y)$, not necessarily unital nor complete, are called standard operator algebras if they contain all finite rank operators on $X$ and $Y$ respectively. The peripheral spectrum of $A\in \mathfrak A$ is the set $\sigma_\pi(A)=\{\lambda\in\sigma(A) : |\lambda|=\max_{z\in\sigma(A)}|z|\}$ of spectral values of $A$ of maximum modulus, and a map $\varphi\colon{\mathfrak A}\to\mathfrak B$ is called peripherally-multiplicative if it satisfies the equation $\sigma_\pi(\varphi(A)\circ\varphi(B))=\sigma_\pi(A B)$ for all $A,B\in\mathfrak A$. We show that any peripherally-multiplicative and surjective map $\varphi\colon{\mathfrak A}\to\mathfrak B$, neither assumed to be linear nor continuous, is a bijective bounded linear operator such that either $\varphi$ or $-\varphi$ is multiplicative or anti-multiplicative. This holds in particular for the algebras of finite rank operators or of compact operators on $X$ and $Y$ and extends earlier results of Molnár. If, in addition, $\sigma_\pi(\varphi(A_0))\neq-\sigma_\pi(A_0)$ for some $A_0\in\mathfrak A$ then $\varphi$ is either multiplicative, in which case $X$ is isomorphic to $Y$, or anti-multiplicative, in which case $X$ is isomorphic to $Y^\ast$. Therefore, if $X\not\cong Y^*$ then $\varphi$ is multiplicative, hence an algebra isomorphism, while if $X\not\cong Y$, then $\varphi$ is anti-multiplicative, hence an algebra anti-isomorphism.
DOI : 10.4064/sm191-2-4
Keywords: banach spaces subalgebras mathfrak subset mathfrak subset necessarily unital nor complete called standard operator algebras contain finite rank operators respectively peripheral spectrum mathfrak set sigma lambda sigma lambda max sigma spectral values maximum modulus map varphi colon mathfrak mathfrak called peripherally multiplicative satisfies equation sigma varphi circ varphi sigma mathfrak peripherally multiplicative surjective map varphi colon mathfrak mathfrak neither assumed linear nor continuous bijective bounded linear operator either varphi varphi multiplicative anti multiplicative holds particular algebras finite rank operators compact operators and extends earlier results moln addition sigma varphi neq sigma mathfrak varphi either multiplicative which isomorphic nbsp anti multiplicative which isomorphic nbsp ast therefore cong * varphi multiplicative hence algebra isomorphism while cong varphi anti multiplicative hence algebra anti isomorphism

Thomas Tonev  1   ; Aaron Luttman  2

1 Department of Mathematical Sciences The University of Montana Missoula, MT 59812-1032, U.S.A.
2 Division of Mathematics and Computer Science Box 5815, Clarkson University Potsdam, NY 13699, U.S.A.
@article{10_4064_sm191_2_4,
     author = {Thomas Tonev and Aaron Luttman},
     title = {Algebra isomorphisms between standard operator algebras},
     journal = {Studia Mathematica},
     pages = {163--170},
     year = {2009},
     volume = {191},
     number = {2},
     doi = {10.4064/sm191-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-4/}
}
TY  - JOUR
AU  - Thomas Tonev
AU  - Aaron Luttman
TI  - Algebra isomorphisms between standard operator algebras
JO  - Studia Mathematica
PY  - 2009
SP  - 163
EP  - 170
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-4/
DO  - 10.4064/sm191-2-4
LA  - en
ID  - 10_4064_sm191_2_4
ER  - 
%0 Journal Article
%A Thomas Tonev
%A Aaron Luttman
%T Algebra isomorphisms between standard operator algebras
%J Studia Mathematica
%D 2009
%P 163-170
%V 191
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-2-4/
%R 10.4064/sm191-2-4
%G en
%F 10_4064_sm191_2_4
Thomas Tonev; Aaron Luttman. Algebra isomorphisms between standard operator algebras. Studia Mathematica, Tome 191 (2009) no. 2, pp. 163-170. doi: 10.4064/sm191-2-4

Cité par Sources :