Fonctions maximales centrées de Hardy–Littlewood
sur les groupes de Heisenberg
Studia Mathematica, Tome 191 (2009) no. 1, pp. 89-100
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
By getting uniformly asymptotic estimates for the
Poisson kernel on Heisenberg groups $\mathbb{H}_{2 n +1}$, we prove
that there exists a constant $A > 0$, independent of $n \in {\mathbb N}^*$,
such that for all $f \in L^1(\mathbb{H}_{2n +1})$, we have $\| M f
\|_{L^{1, \infty}} \leq A n \| f \|_1$, where $M$ denotes the
centered Hardy–Littlewood maximal function defined by the
Carnot–Carathéodory distance or by the Korányi norm.
Mots-clés :
getting uniformly asymptotic estimates poisson kernel heisenberg groups mathbb prove there exists constant independent mathbb * mathbb have infty leq where denotes centered hardy littlewood maximal function defined carnot carath odory distance kor nyi norm
Affiliations des auteurs :
Hong-Quan Li  1
@article{10_4064_sm191_1_7,
author = {Hong-Quan Li},
title = {Fonctions maximales centr\'ees de {Hardy{\textendash}Littlewood
} sur les groupes de {Heisenberg}},
journal = {Studia Mathematica},
pages = {89--100},
year = {2009},
volume = {191},
number = {1},
doi = {10.4064/sm191-1-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-7/}
}
Hong-Quan Li. Fonctions maximales centrées de Hardy–Littlewood sur les groupes de Heisenberg. Studia Mathematica, Tome 191 (2009) no. 1, pp. 89-100. doi: 10.4064/sm191-1-7
Cité par Sources :