A theorem of Gel'fand–Mazur type
Studia Mathematica, Tome 191 (2009) no. 1, pp. 81-88
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Denote by ${\mathfrak c}$ any set of cardinality continuum. It is proved
that a Banach algebra $A$ with the property that for every
collection $\{a_\alpha
:\alpha\in{\mathfrak c}\}\subset A$ there exist $\alpha\neq
\beta\in{\mathfrak c}$ such that $a_\alpha\in a_\beta
A^\#$ is isomorphic to
\[
\bigoplus_{i=1}^r ({\mathbb C}[X]/X^{d_i}{\mathbb C}[X])
\oplus E,
\]
where $d_1,\ldots, d_r\in\mathbb N$, and $E$ is either
$X{\mathbb C}[X]/X^{d_0}{\mathbb C}[X]$ for some $d_0\in\mathbb N$ or a
$1$-dimensional $\bigoplus_{i=1}^r
{\mathbb C}[X]/X^{d_i}{\mathbb C}[X]$-bimodule with trivial right module
action. In particular, ${\mathbb C}$ is the unique non-zero prime
Banach algebra satisfying the above condition.
Mots-clés :
denote mathfrak set cardinality continuum proved banach algebra property every collection alpha alpha mathfrak subset there exist alpha neq beta mathfrak alpha beta isomorphic bigoplus mathbb mathbb oplus where ldots mathbb either mathbb mathbb mathbb dimensional bigoplus mathbb mathbb bimodule trivial right module action particular mathbb unique non zero prime banach algebra satisfying above condition
Affiliations des auteurs :
Hung Le Pham  1
@article{10_4064_sm191_1_6,
author = {Hung Le Pham},
title = {A theorem of {Gel'fand{\textendash}Mazur} type},
journal = {Studia Mathematica},
pages = {81--88},
year = {2009},
volume = {191},
number = {1},
doi = {10.4064/sm191-1-6},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-6/}
}
Hung Le Pham. A theorem of Gel'fand–Mazur type. Studia Mathematica, Tome 191 (2009) no. 1, pp. 81-88. doi: 10.4064/sm191-1-6
Cité par Sources :