A theorem of Gel'fand–Mazur type
Studia Mathematica, Tome 191 (2009) no. 1, pp. 81-88 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Denote by ${\mathfrak c}$ any set of cardinality continuum. It is proved that a Banach algebra $A$ with the property that for every collection $\{a_\alpha :\alpha\in{\mathfrak c}\}\subset A$ there exist $\alpha\neq \beta\in{\mathfrak c}$ such that $a_\alpha\in a_\beta A^\#$ is isomorphic to \[ \bigoplus_{i=1}^r ({\mathbb C}[X]/X^{d_i}{\mathbb C}[X]) \oplus E, \] where $d_1,\ldots, d_r\in\mathbb N$, and $E$ is either $X{\mathbb C}[X]/X^{d_0}{\mathbb C}[X]$ for some $d_0\in\mathbb N$ or a $1$-dimensional $\bigoplus_{i=1}^r {\mathbb C}[X]/X^{d_i}{\mathbb C}[X]$-bimodule with trivial right module action. In particular, ${\mathbb C}$ is the unique non-zero prime Banach algebra satisfying the above condition.
DOI : 10.4064/sm191-1-6
Mots-clés : denote mathfrak set cardinality continuum proved banach algebra property every collection alpha alpha mathfrak subset there exist alpha neq beta mathfrak alpha beta isomorphic bigoplus mathbb mathbb oplus where ldots mathbb either mathbb mathbb mathbb dimensional bigoplus mathbb mathbb bimodule trivial right module action particular mathbb unique non zero prime banach algebra satisfying above condition

Hung Le Pham  1

1 Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta T6G 2G1, Canada
@article{10_4064_sm191_1_6,
     author = {Hung Le Pham},
     title = {A theorem of {Gel'fand{\textendash}Mazur} type},
     journal = {Studia Mathematica},
     pages = {81--88},
     year = {2009},
     volume = {191},
     number = {1},
     doi = {10.4064/sm191-1-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-6/}
}
TY  - JOUR
AU  - Hung Le Pham
TI  - A theorem of Gel'fand–Mazur type
JO  - Studia Mathematica
PY  - 2009
SP  - 81
EP  - 88
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-6/
DO  - 10.4064/sm191-1-6
LA  - de
ID  - 10_4064_sm191_1_6
ER  - 
%0 Journal Article
%A Hung Le Pham
%T A theorem of Gel'fand–Mazur type
%J Studia Mathematica
%D 2009
%P 81-88
%V 191
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-6/
%R 10.4064/sm191-1-6
%G de
%F 10_4064_sm191_1_6
Hung Le Pham. A theorem of Gel'fand–Mazur type. Studia Mathematica, Tome 191 (2009) no. 1, pp. 81-88. doi: 10.4064/sm191-1-6

Cité par Sources :