Non-commutative martingale VMO-spaces
Studia Mathematica, Tome 191 (2009) no. 1, pp. 39-55
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study Banach space properties of non-commutative martingale
VMO-spaces associated with general von Neumann algebras. More
precisely, we obtain a version of the classical Kadets–Pełczyński dichotomy theorem for subspaces of non-commutative
martingale VMO-spaces. As application we prove that
if $\cal M$ is hyperfinite then the non-commutative martingale VMO-space associated with
a filtration of finite-dimensional von Neumannn subalgebras of $\cal M$ has property (u).
Keywords:
study banach space properties non commutative martingale vmo spaces associated general von neumann algebras precisely obtain version classical kadets czy ski dichotomy theorem subspaces non commutative martingale vmo spaces application prove cal hyperfinite non commutative martingale vmo space associated filtration finite dimensional von neumannn subalgebras cal has property nbsp
Affiliations des auteurs :
Narcisse Randrianantoanina  1
@article{10_4064_sm191_1_3,
author = {Narcisse Randrianantoanina},
title = {Non-commutative martingale {VMO-spaces}},
journal = {Studia Mathematica},
pages = {39--55},
year = {2009},
volume = {191},
number = {1},
doi = {10.4064/sm191-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-3/}
}
Narcisse Randrianantoanina. Non-commutative martingale VMO-spaces. Studia Mathematica, Tome 191 (2009) no. 1, pp. 39-55. doi: 10.4064/sm191-1-3
Cité par Sources :