Inverses of generators of nonanalytic semigroups
Studia Mathematica, Tome 191 (2009) no. 1, pp. 11-38 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Suppose $A$ is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup $\{e^{tA}\}_{t \geq 0}.$ It is shown that $A^{-1}$ generates an $O(1 + \tau)$ $A(1 - A)^{-1}$-regularized semigroup. Several equivalences for $A^{-1}$ generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of $\{e^{tA}\}_{t \geq 0},$ on subspaces, for $A^{-1}$ generating a strongly continuous semigroup, and to show that the inverse of $-d/dx$ on the closure of its image in $L^1([0, \infty))$ does not generate a strongly continuous semigroup. We also show that, for $k$ a natural number, if $\{e^{tA}\}_{t \geq 0}$ is exponentially stable, then $\|e^{\tau A^{-1}}x\| = O(\tau^{1/4 - k/2})$ for $x \in {\cal D}(A^k).$
DOI : 10.4064/sm191-1-2
Keywords: suppose injective linear operator banach space generates uniformly bounded strongly continuous semigroup geq shown generates tau regularized semigroup several equivalences generating strongly continuous semigroup given these generate sufficient conditions growth geq subspaces generating strongly continuous semigroup inverse d closure its image infty does generate strongly continuous semigroup natural number geq exponentially stable tau tau cal

Ralph deLaubenfels  1

1 1841 Drew Avenue Columbus, OH 43235, U.S.A. and Department of Mathematics Ohio State University Columbus, OH 43210, U.S.A.
@article{10_4064_sm191_1_2,
     author = {Ralph deLaubenfels},
     title = {Inverses of generators of nonanalytic semigroups},
     journal = {Studia Mathematica},
     pages = {11--38},
     year = {2009},
     volume = {191},
     number = {1},
     doi = {10.4064/sm191-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-2/}
}
TY  - JOUR
AU  - Ralph deLaubenfels
TI  - Inverses of generators of nonanalytic semigroups
JO  - Studia Mathematica
PY  - 2009
SP  - 11
EP  - 38
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-2/
DO  - 10.4064/sm191-1-2
LA  - en
ID  - 10_4064_sm191_1_2
ER  - 
%0 Journal Article
%A Ralph deLaubenfels
%T Inverses of generators of nonanalytic semigroups
%J Studia Mathematica
%D 2009
%P 11-38
%V 191
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-2/
%R 10.4064/sm191-1-2
%G en
%F 10_4064_sm191_1_2
Ralph deLaubenfels. Inverses of generators of nonanalytic semigroups. Studia Mathematica, Tome 191 (2009) no. 1, pp. 11-38. doi: 10.4064/sm191-1-2

Cité par Sources :