An embedding theorem for Sobolev type functions with gradients in a Lorentz space
Studia Mathematica, Tome 191 (2009) no. 1, pp. 1-9 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The purpose of this paper is to prove an embedding theorem for Sobolev type functions whose gradients are in a Lorentz space, in the framework of abstract metric-measure spaces. We then apply this theorem to prove absolute continuity and differentiability of such functions.
DOI : 10.4064/sm191-1-1
Keywords: purpose paper prove embedding theorem sobolev type functions whose gradients lorentz space framework abstract metric measure spaces apply theorem prove absolute continuity differentiability functions

Alireza Ranjbar-Motlagh  1

1 Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415 Tehran, Iran
@article{10_4064_sm191_1_1,
     author = {Alireza Ranjbar-Motlagh},
     title = {An embedding theorem for {Sobolev} type functions
 with gradients in a {Lorentz} space},
     journal = {Studia Mathematica},
     pages = {1--9},
     year = {2009},
     volume = {191},
     number = {1},
     doi = {10.4064/sm191-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-1/}
}
TY  - JOUR
AU  - Alireza Ranjbar-Motlagh
TI  - An embedding theorem for Sobolev type functions
 with gradients in a Lorentz space
JO  - Studia Mathematica
PY  - 2009
SP  - 1
EP  - 9
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-1/
DO  - 10.4064/sm191-1-1
LA  - en
ID  - 10_4064_sm191_1_1
ER  - 
%0 Journal Article
%A Alireza Ranjbar-Motlagh
%T An embedding theorem for Sobolev type functions
 with gradients in a Lorentz space
%J Studia Mathematica
%D 2009
%P 1-9
%V 191
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm191-1-1/
%R 10.4064/sm191-1-1
%G en
%F 10_4064_sm191_1_1
Alireza Ranjbar-Motlagh. An embedding theorem for Sobolev type functions
 with gradients in a Lorentz space. Studia Mathematica, Tome 191 (2009) no. 1, pp. 1-9. doi: 10.4064/sm191-1-1

Cité par Sources :