The famous Gowers tree space is the first example of a space not containing $c_0$, $\ell _1$ or a reflexive subspace. We present a space with a similar construction and prove that it is hereditarily indecomposable (HI) and has $\ell _2$ as a quotient space. Furthermore, we show that every bounded linear operator on it is of the form $\lambda I+W$ where $W$ is a weakly compact (hence strictly singular) operator.
Keywords:
famous gowers tree space first example space containing ell reflexive subspace present space similar construction prove hereditarily indecomposable has ell quotient space furthermore every bounded linear operator of form lambda where weakly compact hence strictly singular operator
@article{10_4064_sm190_3_2,
author = {Giorgos Petsoulas and Theocharis Raikoftsalis},
title = {A {Gowers} tree like space and the space of its
bounded linear operators},
journal = {Studia Mathematica},
pages = {233--281},
year = {2009},
volume = {190},
number = {3},
doi = {10.4064/sm190-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm190-3-2/}
}
TY - JOUR
AU - Giorgos Petsoulas
AU - Theocharis Raikoftsalis
TI - A Gowers tree like space and the space of its
bounded linear operators
JO - Studia Mathematica
PY - 2009
SP - 233
EP - 281
VL - 190
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm190-3-2/
DO - 10.4064/sm190-3-2
LA - en
ID - 10_4064_sm190_3_2
ER -
%0 Journal Article
%A Giorgos Petsoulas
%A Theocharis Raikoftsalis
%T A Gowers tree like space and the space of its
bounded linear operators
%J Studia Mathematica
%D 2009
%P 233-281
%V 190
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm190-3-2/
%R 10.4064/sm190-3-2
%G en
%F 10_4064_sm190_3_2
Giorgos Petsoulas; Theocharis Raikoftsalis. A Gowers tree like space and the space of its
bounded linear operators. Studia Mathematica, Tome 190 (2009) no. 3, pp. 233-281. doi: 10.4064/sm190-3-2